|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from sentence_transformers import SentenceTransformer |
|
from qdrant_client import QdrantClient |
|
import torch |
|
from llama_cpp import Llama |
|
|
|
llm = Llama.from_pretrained( |
|
repo_id="Suku0/mistral-7b-instruct-v0.3-bnb-4bit-GGUF", |
|
filename="mistral-7b-instruct-v0.3-bnb-4bit.Q4_K_M.gguf", |
|
n_ctx=16384 |
|
) |
|
embedding_model = SentenceTransformer('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True) |
|
qdrant_client = QdrantClient( |
|
url="https://9a5cbf91-7dac-4dd0-80f6-13e512da1060.europe-west3-0.gcp.cloud.qdrant.io:6333", |
|
api_key="1F4q1oo0rB5oU5OYOXcuzJLxACEkeGR87ioXwR-Jg617vsctJaPrOw", |
|
) |
|
|
|
def retrieve_context(query): |
|
query_vector = embedding_model.encode(query).tolist() |
|
|
|
search_result = qdrant_client.search( |
|
collection_name="ctx_collection", |
|
query_vector=query_vector, |
|
limit=10, |
|
with_payload=True |
|
) |
|
|
|
context = " ".join([hit.payload["text"] for hit in search_result]) |
|
return context |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
context = retrieve_context(message) |
|
prompt = f"""You are a helpful assistant. Please answer the user's question based on the given context. If the context doesn't provide any answer, say the context doesn't provide the answer. |
|
|
|
### Context: |
|
{context} |
|
|
|
### Question: |
|
{message} |
|
|
|
### Answer: |
|
""" |
|
|
|
response = llm(prompt.format(ctx=context, question=message), max_tokens=243) |
|
|
|
return response["choices"][0]["text"] |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |