Suku0 commited on
Commit
2369989
1 Parent(s): ec24f42

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -43
app.py CHANGED
@@ -1,63 +1,60 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ from sentence_transformers import SentenceTransformer
4
+ from qdrant_client import QdrantClient
5
+ import torch
6
+ from llama_cpp import Llama
7
+
8
+ llm = Llama.from_pretrained(
9
+ repo_id="Suku0/mistral-7b-instruct-v0.3-bnb-4bit-GGUF",
10
+ filename="mistral-7b-instruct-v0.3-bnb-4bit.Q4_K_M.gguf",
11
+ n_ctx=16384
12
+ )
13
+ embedding_model = SentenceTransformer('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
14
+ qdrant_client = QdrantClient(
15
+ url="https://9a5cbf91-7dac-4dd0-80f6-13e512da1060.europe-west3-0.gcp.cloud.qdrant.io:6333",
16
+ api_key="1M-sCCVolJOOJeRXMBUh4wHfj8bkY4nZyHiau0LBllFr1vsXb1oDPg",
17
+ )
18
 
19
+ def retrieve_context(query):
20
+ query_vector = embedding_model.encode(query).tolist()
 
 
21
 
22
+ search_result = qdrant_client.search(
23
+ collection_name="ctx_collection",
24
+ query_vector=query_vector,
25
+ limit=10,
26
+ with_payload=True
27
+ )
28
 
29
+ context = " ".join([hit.payload["text"] for hit in search_result])
30
+ return context
 
 
 
 
 
 
 
31
 
32
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
33
+ context = retrieve_context(message)
34
+ prompt = f"""You are a helpful assistant. Please answer the user's question based on the given context. If the context doesn't provide any answer, say the context doesn't provide the answer.
 
 
35
 
36
+ ### Context:
37
+ {context}
38
 
39
+ ### Question:
40
+ {message}
41
 
42
+ ### Answer:
43
+ """
 
 
 
 
 
 
44
 
45
+ response = llm(prompt.format(ctx=context, question=message), max_tokens=243)
46
+
47
+ return response["choices"][0]["text"]
48
 
 
 
 
49
  demo = gr.ChatInterface(
50
  respond,
51
  additional_inputs=[
52
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
53
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
54
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
55
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
56
+ ]
 
 
 
 
 
 
57
  )
58
 
 
59
  if __name__ == "__main__":
60
  demo.launch()