Sunday01's picture
up
9dce458
import itertools
import numpy as np
from typing import List, Set
from collections import Counter
import networkx as nx
from shapely.geometry import Polygon
from ..utils import TextBlock, Quadrilateral, quadrilateral_can_merge_region
def split_text_region(
bboxes: List[Quadrilateral],
connected_region_indices: Set[int],
width,
height,
gamma = 0.5,
sigma = 2
) -> List[Set[int]]:
connected_region_indices = list(connected_region_indices)
# case 1
if len(connected_region_indices) == 1:
return [set(connected_region_indices)]
# case 2
if len(connected_region_indices) == 2:
fs1 = bboxes[connected_region_indices[0]].font_size
fs2 = bboxes[connected_region_indices[1]].font_size
fs = max(fs1, fs2)
# print(bboxes[connected_region_indices[0]].pts, bboxes[connected_region_indices[1]].pts)
# print(fs, bboxes[connected_region_indices[0]].distance(bboxes[connected_region_indices[1]]), (1 + gamma) * fs)
# print(bboxes[connected_region_indices[0]].angle, bboxes[connected_region_indices[1]].angle, 4 * np.pi / 180)
if bboxes[connected_region_indices[0]].distance(bboxes[connected_region_indices[1]]) < (1 + gamma) * fs \
and abs(bboxes[connected_region_indices[0]].angle - bboxes[connected_region_indices[1]].angle) < 0.2 * np.pi:
return [set(connected_region_indices)]
else:
return [set([connected_region_indices[0]]), set([connected_region_indices[1]])]
# case 3
G = nx.Graph()
for idx in connected_region_indices:
G.add_node(idx)
for (u, v) in itertools.combinations(connected_region_indices, 2):
G.add_edge(u, v, weight=bboxes[u].distance(bboxes[v]))
# Get distances from neighbouring bboxes
edges = nx.algorithms.tree.minimum_spanning_edges(G, algorithm='kruskal', data=True)
edges = sorted(edges, key=lambda a: a[2]['weight'], reverse=True)
distances_sorted = [a[2]['weight'] for a in edges]
fontsize = np.mean([bboxes[idx].font_size for idx in connected_region_indices])
distances_std = np.std(distances_sorted)
distances_mean = np.mean(distances_sorted)
std_threshold = max(0.3 * fontsize + 5, 5)
b1, b2 = bboxes[edges[0][0]], bboxes[edges[0][1]]
max_poly_distance = Polygon(b1.pts).distance(Polygon(b2.pts))
max_centroid_alignment = min(abs(b1.centroid[0] - b2.centroid[0]), abs(b1.centroid[1] - b2.centroid[1]))
# print(edges)
# print(f'std: {distances_std} < thrshold: {std_threshold}, mean: {distances_mean}')
# print(f'{distances_sorted[0]} <= {distances_mean + distances_std * sigma}' \
# f' or {distances_sorted[0]} <= {fontsize * (1 + gamma)}' \
# f' or {distances_sorted[0] - distances_sorted[1]} < {distances_std * sigma}')
if (distances_sorted[0] <= distances_mean + distances_std * sigma \
or distances_sorted[0] <= fontsize * (1 + gamma)) \
and (distances_std < std_threshold \
or max_poly_distance == 0 and max_centroid_alignment < 5):
return [set(connected_region_indices)]
else:
# (split_u, split_v, _) = edges[0]
# print(f'split between "{bboxes[split_u].pts}", "{bboxes[split_v].pts}"')
G = nx.Graph()
for idx in connected_region_indices:
G.add_node(idx)
# Split out the most deviating bbox
for edge in edges[1:]:
G.add_edge(edge[0], edge[1])
ans = []
for node_set in nx.algorithms.components.connected_components(G):
ans.extend(split_text_region(bboxes, node_set, width, height))
return ans
# def get_mini_boxes(contour):
# bounding_box = cv2.minAreaRect(contour)
# points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
# index_1, index_2, index_3, index_4 = 0, 1, 2, 3
# if points[1][1] > points[0][1]:
# index_1 = 0
# index_4 = 1
# else:
# index_1 = 1
# index_4 = 0
# if points[3][1] > points[2][1]:
# index_2 = 2
# index_3 = 3
# else:
# index_2 = 3
# index_3 = 2
# box = [points[index_1], points[index_2], points[index_3], points[index_4]]
# box = np.array(box)
# startidx = box.sum(axis=1).argmin()
# box = np.roll(box, 4 - startidx, 0)
# box = np.array(box)
# return box
def merge_bboxes_text_region(bboxes: List[Quadrilateral], width, height):
# step 0: merge quadrilaterals that belong to the same textline
# u = 0
# removed_counter = 0
# while u < len(bboxes) - 1 - removed_counter:
# v = u
# while v < len(bboxes) - removed_counter:
# if quadrilateral_can_merge_region(bboxes[u], bboxes[v], aspect_ratio_tol=1.1, font_size_ratio_tol=1,
# char_gap_tolerance=1, char_gap_tolerance2=3, discard_connection_gap=0) \
# and abs(bboxes[u].centroid[0] - bboxes[v].centroid[0]) < 5 or abs(bboxes[u].centroid[1] - bboxes[v].centroid[1]) < 5:
# bboxes[u] = merge_quadrilaterals(bboxes[u], bboxes[v])
# removed_counter += 1
# bboxes.pop(v)
# else:
# v += 1
# u += 1
# step 1: divide into multiple text region candidates
G = nx.Graph()
for i, box in enumerate(bboxes):
G.add_node(i, box=box)
for ((u, ubox), (v, vbox)) in itertools.combinations(enumerate(bboxes), 2):
# if quadrilateral_can_merge_region_coarse(ubox, vbox):
if quadrilateral_can_merge_region(ubox, vbox, aspect_ratio_tol=1.3, font_size_ratio_tol=2,
char_gap_tolerance=1, char_gap_tolerance2=3):
G.add_edge(u, v)
# step 2: postprocess - further split each region
region_indices: List[Set[int]] = []
for node_set in nx.algorithms.components.connected_components(G):
region_indices.extend(split_text_region(bboxes, node_set, width, height))
# step 3: return regions
for node_set in region_indices:
# for node_set in nx.algorithms.components.connected_components(G):
nodes = list(node_set)
txtlns: List[Quadrilateral] = np.array(bboxes)[nodes]
# calculate average fg and bg color
fg_r = round(np.mean([box.fg_r for box in txtlns]))
fg_g = round(np.mean([box.fg_g for box in txtlns]))
fg_b = round(np.mean([box.fg_b for box in txtlns]))
bg_r = round(np.mean([box.bg_r for box in txtlns]))
bg_g = round(np.mean([box.bg_g for box in txtlns]))
bg_b = round(np.mean([box.bg_b for box in txtlns]))
# majority vote for direction
dirs = [box.direction for box in txtlns]
majority_dir_top_2 = Counter(dirs).most_common(2)
if len(majority_dir_top_2) == 1 :
majority_dir = majority_dir_top_2[0][0]
elif majority_dir_top_2[0][1] == majority_dir_top_2[1][1] : # if top 2 have the same counts
max_aspect_ratio = -100
for box in txtlns :
if box.aspect_ratio > max_aspect_ratio :
max_aspect_ratio = box.aspect_ratio
majority_dir = box.direction
if 1.0 / box.aspect_ratio > max_aspect_ratio :
max_aspect_ratio = 1.0 / box.aspect_ratio
majority_dir = box.direction
else :
majority_dir = majority_dir_top_2[0][0]
# sort textlines
if majority_dir == 'h':
nodes = sorted(nodes, key=lambda x: bboxes[x].centroid[1])
elif majority_dir == 'v':
nodes = sorted(nodes, key=lambda x: -bboxes[x].centroid[0])
txtlns = np.array(bboxes)[nodes]
# yield overall bbox and sorted indices
yield txtlns, (fg_r, fg_g, fg_b), (bg_r, bg_g, bg_b)
async def dispatch(textlines: List[Quadrilateral], width: int, height: int, verbose: bool = False) -> List[TextBlock]:
# print(width, height)
# import re
# for l in textlines:
# s = str(l.pts)
# s = re.sub(r'([\d\]]) ', r'\1, ', s.replace('\n ', ', ')).replace(']]', ']],')
# print(s)
text_regions: List[TextBlock] = []
for (txtlns, fg_color, bg_color) in merge_bboxes_text_region(textlines, width, height):
total_logprobs = 0
for txtln in txtlns:
total_logprobs += np.log(txtln.prob) * txtln.area
total_logprobs /= sum([txtln.area for txtln in textlines])
font_size = int(min([txtln.font_size for txtln in txtlns]))
angle = np.rad2deg(np.mean([txtln.angle for txtln in txtlns])) - 90
if abs(angle) < 3:
angle = 0
lines = [txtln.pts for txtln in txtlns]
texts = [txtln.text for txtln in txtlns]
region = TextBlock(lines, texts, font_size=font_size, angle=angle, prob=np.exp(total_logprobs),
fg_color=fg_color, bg_color=bg_color)
text_regions.append(region)
return text_regions