#!/usr/bin/env python
from __future__ import annotations
import gradio as gr
import numpy as np
import spaces
import random
from diffusers import AutoencoderKL, DiffusionPipeline
import torch
import os
import PIL.Image
MARKDOWN = """
The demo is based on OpenDalle V1.1 by @dataautogpt3
The demo is based on the fusion of different models to provide better performance, comparatively.
You can try out the prompts and check for yourself.
**Parts of codes are adopted from [@hysts's SD-XL demo](https://huggingface.co/spaces/hysts/SD-XL) running on A10G GPU **
You can check out more of my spaces. Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [Github](https://github.com/sander-ali)
"""
if not torch.cuda.is_available():
MARKDOWN += "\n
Running on CPU 🥶 This demo does not work on CPU.
"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained("dataautogpt3/OpenDalleV1.1", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
if ENABLE_REFINER:
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
if ENABLE_REFINER:
refiner.enable_model_cpu_offload()
else:
pipe.to(device)
if ENABLE_REFINER:
refiner.to(device)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode='reduce-overhead', fullgraph=True)
if ENABLE_REFINER:
refiner.unet = torch.compile(refiner.unet, mode="reduce_overhead", fullgraph=True)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(enable_queue=True)
def infer(
prompt: str,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
guidance_scale_refiner: float = 5.0,
num_inference_steps_base: int = 25,
num_inference_steps_refiner: int = 25,
apply_refiner: bool = False,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
print(f"** Generating image for: \"{prompt}\" **")
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
if not use_prompt_2:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
if not apply_refiner:
return pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="pil",
).images[0]
else:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="latent",
).images
image = refiner(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
guidance_scale=guidance_scale_refiner,
num_inference_steps=num_inference_steps_refiner,
image=latents,
generator=generator,
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
# if torch.cuda.is_available():
# power_device = "GPU"
# else:
# power_device = "CPU"
theme = gr.themes.Glass(
primary_hue="blue",
secondary_hue="blue",
neutral_hue="gray",
text_size="md",
spacing_size="md",
radius_size="md",
font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
).set(
body_background_fill_dark='*background_fill_primary',
background_fill_primary_dark='*neutral_950',
background_fill_secondary='*neutral_50',
background_fill_secondary_dark='*neutral_900',
border_color_primary_dark='*neutral_700',
block_background_fill='*background_fill_primary',
block_background_fill_dark='*neutral_800',
block_border_width='1px',
block_label_background_fill='*background_fill_primary',
block_label_background_fill_dark='*background_fill_secondary',
block_label_text_color='*neutral_500',
block_label_text_size='*text_sm',
block_label_text_weight='400',
block_shadow='none',
block_shadow_dark='none',
block_title_text_color='*neutral_500',
block_title_text_weight='400',
panel_border_width='0',
panel_border_width_dark='0',
checkbox_background_color_dark='*neutral_800',
checkbox_border_width='*input_border_width',
checkbox_label_border_width='*input_border_width',
input_background_fill='*neutral_100',
input_background_fill_dark='*neutral_700',
input_border_color_focus_dark='*neutral_700',
input_border_width='0px',
input_border_width_dark='0px',
slider_color='#2563eb',
slider_color_dark='#2563eb',
table_even_background_fill_dark='*neutral_950',
table_odd_background_fill_dark='*neutral_900',
button_border_width='*input_border_width',
button_shadow_active='none',
button_primary_background_fill='*primary_200',
button_primary_background_fill_dark='*primary_700',
button_primary_background_fill_hover='*button_primary_background_fill',
button_primary_background_fill_hover_dark='*button_primary_background_fill',
button_secondary_background_fill='*neutral_200',
button_secondary_background_fill_dark='*neutral_600',
button_secondary_background_fill_hover='*button_secondary_background_fill',
button_secondary_background_fill_hover_dark='*button_secondary_background_fill',
button_cancel_background_fill='*button_secondary_background_fill',
button_cancel_background_fill_dark='*button_secondary_background_fill',
button_cancel_background_fill_hover='*button_cancel_background_fill',
button_cancel_background_fill_hover_dark='*button_cancel_background_fill'
)
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
gr.Markdown(MARKDOWN)
gr.DuplicateButton()
with gr.Group():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
container=False,
placeholder="Enter your prompt",
)
run_button = gr.Button("Generate")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
prompt_2 = gr.Text(
label="Prompt 2",
max_lines=1,
placeholder="Enter your prompt",
visible=False,
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
with gr.Row():
guidance_scale_base = gr.Slider(
label="Guidance scale for base",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_base = gr.Slider(
label="Number of inference steps for base",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row(visible=False) as refiner_params:
guidance_scale_refiner = gr.Slider(
label="Guidance scale for refiner",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_refiner = gr.Slider(
label="Number of inference steps for refiner",
minimum=10,
maximum=100,
step=1,
value=25,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=infer,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
apply_refiner.change(
fn=lambda x: gr.update(visible=x),
inputs=apply_refiner,
outputs=refiner_params,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=infer,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
guidance_scale_refiner,
num_inference_steps_base,
num_inference_steps_refiner,
apply_refiner,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20, api_open=False).launch(show_api=False, share=True)