import cv2 import numpy as np import torch import os from einops import rearrange from annotator.base_annotator import BaseProcessor from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny from .models.mbv2_mlsd_large import MobileV2_MLSD_Large from .utils import pred_lines remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth" old_modeldir = os.path.dirname(os.path.realpath(__file__)) class MLSDProcessor(BaseProcessor): def __init__(self, **kwargs): super().__init__(**kwargs) self.model = None self.model_dir = os.path.join(self.models_path, "mlsd") def unload_model(self): if self.model is not None: self.model = self.model.cpu() def load_model(self): model_path = os.path.join(self.model_dir, "mlsd_large_512_fp32.pth") # old_modelpath = os.path.join(old_modeldir, "mlsd_large_512_fp32.pth") # if os.path.exists(old_modelpath): # modelpath = old_modelpath if not os.path.exists(model_path): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=self.model_dir) mlsdmodel = MobileV2_MLSD_Large() mlsdmodel.load_state_dict(torch.load(model_path), strict=True) mlsdmodel = mlsdmodel.to(self.device).eval() self.model = mlsdmodel def __call__(self, input_image, thr_v= 0.1, thr_d= 0.1, **kwargs): # global modelpath, mlsdmodel if self.model is None: self.load_model() assert input_image.ndim == 3 img = input_image img_output = np.zeros_like(img) try: with torch.no_grad(): lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d, self.device) for line in lines: x_start, y_start, x_end, y_end = [int(val) for val in line] cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) except Exception as e: pass return img_output[:, :, 0]