Commit
·
714b133
1
Parent(s):
fd2f716
add buttons
Browse files
README.md
CHANGED
@@ -49,7 +49,7 @@ This tool simplifies the process of creating custom datasets, enabling you to:
|
|
49 |
- Describe the characteristics of your desired application
|
50 |
- Iterate on sample datasets
|
51 |
- Produce full-scale datasets
|
52 |
-
- Push your datasets to the [Hugging Face Hub](https://huggingface.co/datasets?other=datacraft) and/or Argilla
|
53 |
|
54 |
By using the Synthetic Data Generator, you can rapidly prototype and create datasets for, accelerating your AI development process.
|
55 |
|
|
|
49 |
- Describe the characteristics of your desired application
|
50 |
- Iterate on sample datasets
|
51 |
- Produce full-scale datasets
|
52 |
+
- Push your datasets to the [Hugging Face Hub](https://huggingface.co/datasets?other=datacraft) and/or [Argilla](https://docs.argilla.io/)
|
53 |
|
54 |
By using the Synthetic Data Generator, you can rapidly prototype and create datasets for, accelerating your AI development process.
|
55 |
|
src/synthetic_dataset_generator/app.py
CHANGED
@@ -7,19 +7,7 @@ from synthetic_dataset_generator.apps.textcat import app as textcat_app
|
|
7 |
theme = "argilla/argilla-theme"
|
8 |
|
9 |
css = """
|
10 |
-
button[role="tab"][aria-selected="true"] { border: 0; background: var(--neutral-800); color: white; border-top-right-radius: var(--radius-md); border-top-left-radius: var(--radius-md)}
|
11 |
-
button[role="tab"][aria-selected="true"]:hover {border-color: var(--button-primary-background-fill)}
|
12 |
-
.tabitem { border: 0; padding-inline: 0}
|
13 |
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
|
14 |
-
.group_padding{padding: .55em}
|
15 |
-
.gallery-item {background: var(--background-fill-secondary); text-align: left}
|
16 |
-
.gallery {white-space: wrap}
|
17 |
-
#space_model .wrap > label:last-child{opacity: 0.3; pointer-events:none}
|
18 |
-
#system_prompt_examples {
|
19 |
-
color: var(--body-text-color) !important;
|
20 |
-
background-color: var(--block-background-fill) !important;
|
21 |
-
}
|
22 |
-
.container {padding-inline: 0 !important}
|
23 |
"""
|
24 |
|
25 |
demo = TabbedInterface(
|
|
|
7 |
theme = "argilla/argilla-theme"
|
8 |
|
9 |
css = """
|
|
|
|
|
|
|
10 |
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"""
|
12 |
|
13 |
demo = TabbedInterface(
|
src/synthetic_dataset_generator/apps/base.py
CHANGED
@@ -129,16 +129,18 @@ def show_success_message(org_name, repo_name) -> gr.Markdown:
|
|
129 |
client = get_argilla_client()
|
130 |
if client is None:
|
131 |
return gr.Markdown(
|
132 |
-
value="""
|
133 |
-
<div style="padding: 1em; background-color:
|
134 |
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
|
135 |
<p style="margin-top: 0.5em;">
|
136 |
-
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks.
|
137 |
-
<
|
138 |
-
https://huggingface.co/datasets/{org_name}/{repo_name}
|
139 |
-
|
|
|
|
|
140 |
</p>
|
141 |
-
<p style="margin-top: 1em;
|
142 |
By configuring an `ARGILLA_API_URL` and `ARGILLA_API_KEY` you can curate the dataset in Argilla.
|
143 |
Unfamiliar with Argilla? Here are some docs to help you get started:
|
144 |
<br>• <a href="https://docs.argilla.io/latest/getting_started/quickstart/" target="_blank">How to get started with Argilla</a>
|
@@ -151,7 +153,7 @@ def show_success_message(org_name, repo_name) -> gr.Markdown:
|
|
151 |
argilla_api_url = client.api_url
|
152 |
return gr.Markdown(
|
153 |
value=f"""
|
154 |
-
<div style="padding: 1em; background-color:
|
155 |
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
|
156 |
<p style="margin-top: 0.5em;">
|
157 |
<strong>
|
@@ -161,13 +163,18 @@ def show_success_message(org_name, repo_name) -> gr.Markdown:
|
|
161 |
</strong>
|
162 |
</p>
|
163 |
<p style="margin-top: 0.5em;">
|
164 |
-
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks.
|
165 |
-
<
|
166 |
-
https://huggingface.co/datasets/{org_name}/{repo_name}
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
168 |
</p>
|
169 |
</div>
|
170 |
-
<p style="margin-top: 1em;
|
171 |
Unfamiliar with Argilla? Here are some docs to help you get started:
|
172 |
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
|
173 |
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
|
|
|
129 |
client = get_argilla_client()
|
130 |
if client is None:
|
131 |
return gr.Markdown(
|
132 |
+
value=f"""
|
133 |
+
<div style="padding: 1em; background-color: rgba(211, 211, 211, 0.5); border-radius: 5px; margin-top: 1em; color: inherit;">
|
134 |
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
|
135 |
<p style="margin-top: 0.5em;">
|
136 |
+
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks.
|
137 |
+
<div style="display: flex; gap: 10px;">
|
138 |
+
<button class="lg primary svelte-cmf5ev" onclick="window.open('https://huggingface.co/datasets/{org_name}/{repo_name}', '_blank')" id="component-96">
|
139 |
+
Open in Hub
|
140 |
+
</button>
|
141 |
+
</div>
|
142 |
</p>
|
143 |
+
<p style="margin-top: 1em; color: #333;">
|
144 |
By configuring an `ARGILLA_API_URL` and `ARGILLA_API_KEY` you can curate the dataset in Argilla.
|
145 |
Unfamiliar with Argilla? Here are some docs to help you get started:
|
146 |
<br>• <a href="https://docs.argilla.io/latest/getting_started/quickstart/" target="_blank">How to get started with Argilla</a>
|
|
|
153 |
argilla_api_url = client.api_url
|
154 |
return gr.Markdown(
|
155 |
value=f"""
|
156 |
+
<div style="padding: 1em; background-color: rgba(211, 211, 211, 0.5); border-radius: 5px; margin-top: 1em; color: inherit;">
|
157 |
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
|
158 |
<p style="margin-top: 0.5em;">
|
159 |
<strong>
|
|
|
163 |
</strong>
|
164 |
</p>
|
165 |
<p style="margin-top: 0.5em;">
|
166 |
+
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks.
|
167 |
+
<div style="display: flex; gap: 10px;">
|
168 |
+
<button class="lg primary svelte-cmf5ev" onclick="window.open('https://huggingface.co/datasets/{org_name}/{repo_name}', '_blank')" id="component-95">
|
169 |
+
Open in Argilla
|
170 |
+
</button>
|
171 |
+
<button class="lg secondary svelte-cmf5ev" onclick="window.open('https://huggingface.co/datasets/{org_name}/{repo_name}', '_blank')" id="component-96">
|
172 |
+
Open in Hub
|
173 |
+
</button>
|
174 |
+
</div>
|
175 |
</p>
|
176 |
</div>
|
177 |
+
<p style="margin-top: 1em; color: #333;">
|
178 |
Unfamiliar with Argilla? Here are some docs to help you get started:
|
179 |
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
|
180 |
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
|
src/synthetic_dataset_generator/apps/sft.py
CHANGED
@@ -363,28 +363,22 @@ with gr.Blocks() as app:
|
|
363 |
label="Dataset description",
|
364 |
placeholder="Give a precise description of your desired dataset.",
|
365 |
)
|
366 |
-
with gr.
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
value=0.8,
|
371 |
-
step=0.1,
|
372 |
-
interactive=True,
|
373 |
-
show_label=False,
|
374 |
)
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
with gr.Column(scale=
|
380 |
examples = gr.Examples(
|
381 |
examples=DEFAULT_DATASET_DESCRIPTIONS,
|
382 |
inputs=[dataset_description],
|
383 |
cache_examples=False,
|
384 |
label="Examples",
|
385 |
)
|
386 |
-
with gr.Column(scale=1):
|
387 |
-
pass
|
388 |
|
389 |
gr.HTML(value="<hr>")
|
390 |
gr.Markdown(value="## 2. Configure your dataset")
|
@@ -403,9 +397,14 @@ with gr.Blocks() as app:
|
|
403 |
interactive=True,
|
404 |
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
|
405 |
)
|
406 |
-
|
407 |
-
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
409 |
with gr.Column(scale=3):
|
410 |
dataframe = gr.Dataframe(
|
411 |
headers=["prompt", "completion"],
|
@@ -431,6 +430,14 @@ with gr.Blocks() as app:
|
|
431 |
interactive=True,
|
432 |
scale=1,
|
433 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
private = gr.Checkbox(
|
435 |
label="Private dataset",
|
436 |
value=False,
|
|
|
363 |
label="Dataset description",
|
364 |
placeholder="Give a precise description of your desired dataset.",
|
365 |
)
|
366 |
+
with gr.Row():
|
367 |
+
load_btn = gr.Button(
|
368 |
+
"Create",
|
369 |
+
variant="primary",
|
|
|
|
|
|
|
|
|
370 |
)
|
371 |
+
clear_btn = gr.Button(
|
372 |
+
"Clear",
|
373 |
+
variant="secondary",
|
374 |
+
)
|
375 |
+
with gr.Column(scale=3):
|
376 |
examples = gr.Examples(
|
377 |
examples=DEFAULT_DATASET_DESCRIPTIONS,
|
378 |
inputs=[dataset_description],
|
379 |
cache_examples=False,
|
380 |
label="Examples",
|
381 |
)
|
|
|
|
|
382 |
|
383 |
gr.HTML(value="<hr>")
|
384 |
gr.Markdown(value="## 2. Configure your dataset")
|
|
|
397 |
interactive=True,
|
398 |
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
|
399 |
)
|
400 |
+
with gr.Row():
|
401 |
+
btn_apply_to_sample_dataset = gr.Button(
|
402 |
+
"Save", variant="primary"
|
403 |
+
)
|
404 |
+
clear_btn = gr.Button(
|
405 |
+
"Clear",
|
406 |
+
variant="secondary",
|
407 |
+
)
|
408 |
with gr.Column(scale=3):
|
409 |
dataframe = gr.Dataframe(
|
410 |
headers=["prompt", "completion"],
|
|
|
430 |
interactive=True,
|
431 |
scale=1,
|
432 |
)
|
433 |
+
temperature = gr.Slider(
|
434 |
+
minimum=0.1,
|
435 |
+
maximum=1,
|
436 |
+
value=0.8,
|
437 |
+
step=0.1,
|
438 |
+
interactive=True,
|
439 |
+
show_label=False,
|
440 |
+
)
|
441 |
private = gr.Checkbox(
|
442 |
label="Private dataset",
|
443 |
value=False,
|
src/synthetic_dataset_generator/apps/textcat.py
CHANGED
@@ -340,28 +340,22 @@ with gr.Blocks() as app:
|
|
340 |
label="Dataset description",
|
341 |
placeholder="Give a precise description of your desired dataset.",
|
342 |
)
|
343 |
-
with gr.
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
value=0.8,
|
348 |
-
step=0.1,
|
349 |
-
interactive=True,
|
350 |
-
show_label=False,
|
351 |
)
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
with gr.Column(scale=
|
357 |
examples = gr.Examples(
|
358 |
examples=DEFAULT_DATASET_DESCRIPTIONS,
|
359 |
inputs=[dataset_description],
|
360 |
cache_examples=False,
|
361 |
label="Examples",
|
362 |
)
|
363 |
-
with gr.Column(scale=1):
|
364 |
-
pass
|
365 |
|
366 |
gr.HTML("<hr>")
|
367 |
gr.Markdown("## 2. Configure your dataset")
|
@@ -415,9 +409,9 @@ with gr.Blocks() as app:
|
|
415 |
info="Select the comprehension level for the text. Ensure it matches the task context.",
|
416 |
interactive=True,
|
417 |
)
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
with gr.Column(scale=3):
|
422 |
dataframe = gr.Dataframe(
|
423 |
headers=["labels", "text"], wrap=True, height=500, interactive=False
|
@@ -440,6 +434,14 @@ with gr.Blocks() as app:
|
|
440 |
interactive=True,
|
441 |
scale=1,
|
442 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
private = gr.Checkbox(
|
444 |
label="Private dataset",
|
445 |
value=False,
|
|
|
340 |
label="Dataset description",
|
341 |
placeholder="Give a precise description of your desired dataset.",
|
342 |
)
|
343 |
+
with gr.Row():
|
344 |
+
load_btn = gr.Button(
|
345 |
+
"Create",
|
346 |
+
variant="primary",
|
|
|
|
|
|
|
|
|
347 |
)
|
348 |
+
clear_btn = gr.Button(
|
349 |
+
"Clear",
|
350 |
+
variant="secondary",
|
351 |
+
)
|
352 |
+
with gr.Column(scale=3):
|
353 |
examples = gr.Examples(
|
354 |
examples=DEFAULT_DATASET_DESCRIPTIONS,
|
355 |
inputs=[dataset_description],
|
356 |
cache_examples=False,
|
357 |
label="Examples",
|
358 |
)
|
|
|
|
|
359 |
|
360 |
gr.HTML("<hr>")
|
361 |
gr.Markdown("## 2. Configure your dataset")
|
|
|
409 |
info="Select the comprehension level for the text. Ensure it matches the task context.",
|
410 |
interactive=True,
|
411 |
)
|
412 |
+
with gr.Row():
|
413 |
+
btn_apply_to_sample_dataset = gr.Button("Save", variant="primary")
|
414 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
415 |
with gr.Column(scale=3):
|
416 |
dataframe = gr.Dataframe(
|
417 |
headers=["labels", "text"], wrap=True, height=500, interactive=False
|
|
|
434 |
interactive=True,
|
435 |
scale=1,
|
436 |
)
|
437 |
+
temperature = gr.Slider(
|
438 |
+
minimum=0.1,
|
439 |
+
maximum=1,
|
440 |
+
value=0.8,
|
441 |
+
step=0.1,
|
442 |
+
interactive=True,
|
443 |
+
show_label=False,
|
444 |
+
)
|
445 |
private = gr.Checkbox(
|
446 |
label="Private dataset",
|
447 |
value=False,
|
src/synthetic_dataset_generator/pipelines/eval.py
CHANGED
@@ -17,7 +17,7 @@ def get_ultrafeedback_evaluator(aspect, is_sample):
|
|
17 |
base_url=BASE_URL,
|
18 |
api_key=_get_next_api_key(),
|
19 |
generation_kwargs={
|
20 |
-
"temperature": 0,
|
21 |
"max_new_tokens": 256 if is_sample else 2048,
|
22 |
},
|
23 |
),
|
@@ -35,7 +35,7 @@ def get_custom_evaluator(prompt_template, structured_output, columns, is_sample)
|
|
35 |
api_key=_get_next_api_key(),
|
36 |
structured_output={"format": "json", "schema": structured_output},
|
37 |
generation_kwargs={
|
38 |
-
"temperature": 0,
|
39 |
"max_new_tokens": 256 if is_sample else 2048,
|
40 |
},
|
41 |
),
|
@@ -78,7 +78,7 @@ with Pipeline(name="ultrafeedback") as pipeline:
|
|
78 |
base_url=BASE_URL,
|
79 |
api_key=os.environ["API_KEY"],
|
80 |
generation_kwargs={{
|
81 |
-
"temperature": 0,
|
82 |
"max_new_tokens": 2048,
|
83 |
}},
|
84 |
),
|
@@ -122,7 +122,7 @@ with Pipeline(name="ultrafeedback") as pipeline:
|
|
122 |
base_url=BASE_URL,
|
123 |
api_key=os.environ["BASE_URL"],
|
124 |
generation_kwargs={{
|
125 |
-
"temperature": 0,
|
126 |
"max_new_tokens": 2048,
|
127 |
}},
|
128 |
output_mappings={{
|
@@ -176,7 +176,7 @@ with Pipeline(name="custom-evaluation") as pipeline:
|
|
176 |
api_key=os.environ["HF_TOKEN"],
|
177 |
structured_output={{"format": "json", "schema": {structured_output}}},
|
178 |
generation_kwargs={{
|
179 |
-
"temperature": 0,
|
180 |
"max_new_tokens": 2048,
|
181 |
}},
|
182 |
),
|
|
|
17 |
base_url=BASE_URL,
|
18 |
api_key=_get_next_api_key(),
|
19 |
generation_kwargs={
|
20 |
+
"temperature": 0.01,
|
21 |
"max_new_tokens": 256 if is_sample else 2048,
|
22 |
},
|
23 |
),
|
|
|
35 |
api_key=_get_next_api_key(),
|
36 |
structured_output={"format": "json", "schema": structured_output},
|
37 |
generation_kwargs={
|
38 |
+
"temperature": 0.01,
|
39 |
"max_new_tokens": 256 if is_sample else 2048,
|
40 |
},
|
41 |
),
|
|
|
78 |
base_url=BASE_URL,
|
79 |
api_key=os.environ["API_KEY"],
|
80 |
generation_kwargs={{
|
81 |
+
"temperature": 0.01,
|
82 |
"max_new_tokens": 2048,
|
83 |
}},
|
84 |
),
|
|
|
122 |
base_url=BASE_URL,
|
123 |
api_key=os.environ["BASE_URL"],
|
124 |
generation_kwargs={{
|
125 |
+
"temperature": 0.01,
|
126 |
"max_new_tokens": 2048,
|
127 |
}},
|
128 |
output_mappings={{
|
|
|
176 |
api_key=os.environ["HF_TOKEN"],
|
177 |
structured_output={{"format": "json", "schema": {structured_output}}},
|
178 |
generation_kwargs={{
|
179 |
+
"temperature": 0.01,
|
180 |
"max_new_tokens": 2048,
|
181 |
}},
|
182 |
),
|