Spaces:
Running
Running
File size: 10,844 Bytes
c57c848 a2b0083 c57c848 dad3685 a2b0083 dad3685 a2b0083 dad3685 c57c848 a08a74d a2b0083 a08a74d c57c848 a2b0083 c57c848 a2b0083 c57c848 e09232a a08a74d 3710a04 a08a74d 04b9742 f97e9a9 c57c848 dad3685 a08a74d dad3685 34b93b5 a08a74d 34b93b5 a08a74d 34b93b5 f97e9a9 72241b4 f97e9a9 18e11fc f97e9a9 34b93b5 25dea08 db8f51d 25dea08 9be0260 0fd14a7 04b9742 0b2db5d cd3b61f 0b2db5d cd3b61f 25dea08 0fd14a7 25dea08 da1ebea 2160e26 b55fefb 2160e26 b55fefb 2160e26 911b4eb db8f51d 18e11fc c57c848 5e5a50a 899a753 da1ebea fcf78e8 5b36832 d8fb0cb 020ecdf 5b36832 fcf78e8 899a753 da1ebea 5e5a50a fcf78e8 c57c848 020ecdf 25dea08 76a6ea9 25dea08 d89e652 76a6ea9 d89e652 020ecdf c57c848 0b2db5d c57c848 b5eddd2 fcf78e8 25dea08 c57c848 25dea08 c57c848 db8f51d c57c848 328a8f1 db8f51d da1ebea 9054596 c57c848 25dea08 da1ebea c57c848 25dea08 c57c848 25dea08 da1ebea 25dea08 da1ebea 25dea08 da1ebea 0b2db5d 911b4eb cd3b61f 911b4eb a08a74d 12c1c6b a08a74d 12c1c6b 911b4eb c57c848 911b4eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model1_path = "modernbert.bin"
model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_1.load_state_dict(torch.load(model1_path, map_location=device))
model_1.to(device).eval()
model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device))
model_2.to(device).eval()
model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device))
model_3.to(device).eval()
label_mapping = {
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
39: 'text-davinci-002', 40: 'text-davinci-003'
}
def classify_text(text):
if not text.strip():
result_message = (
f"---- \n"
f"**Results will appear here...**"
)
return result_message
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
logits_1 = model_1(**inputs).logits
logits_2 = model_2(**inputs).logits
logits_3 = model_3(**inputs).logits
softmax_1 = torch.softmax(logits_1, dim=1)
softmax_2 = torch.softmax(logits_2, dim=1)
softmax_3 = torch.softmax(logits_3, dim=1)
averaged_probabilities = (softmax_1 + softmax_2 + softmax_3) / 3
probabilities = averaged_probabilities[0]
ai_probs = probabilities.clone()
ai_probs[24] = 0
ai_total_prob = ai_probs.sum().item() * 100
human_prob = 100 - ai_total_prob
ai_argmax_index = torch.argmax(ai_probs).item()
ai_argmax_model = label_mapping[ai_argmax_index]
if human_prob > ai_total_prob:
result_message = (
f"β
- The text is <span class='highlight-human'>**{human_prob:.2f}%** likely <b>Human written</b>.</span>"
)
else:
result_message = (
f"π€ - The text is <span class='highlight-ai'>**{ai_total_prob:.2f}%** likely <b>AI generated</b>.</span>\n\n"
f"**Identified AI Model:** {ai_argmax_model}"
)
return result_message
title = "AI Text Detector"
description = """
This tool uses the <b>ModernBERT</b> model to identify whether a given text was written by a human or generated by artificial intelligence (AI). It works with a soft voting ensemble using <b>three</b> models, combining their outputs to improve the accuracy.
<br>
<div style="line-height: 1.8;">
β
<b>Human Verification:</b> Human-written content is clearly marked.<br>
π <b>Model Detection:</b> Can identify content from over 40 AI models.<br>
π <b>Accuracy:</b> Works best with longer texts for improved precision.
</div>
<br>
Paste your text below to analyze its origin.
"""
bottom_text = "**Developed by SzegedAI**"
AI_texts = [
"Camels are remarkable desert animals known for their unique adaptations to harsh, arid environments. Native to the Middle East, North Africa, and parts of Asia, camels have been essential to human life for centuries, serving as a mode of transportation, a source of food, and even a symbol of endurance and survival. There are two primary species of camels: the dromedary camel, which has a single hump and is commonly found in the Middle East and North Africa, and the Bactrian camel, which has two humps and is native to Central Asia. Their humps store fat, not water, as commonly believed, allowing them to survive long periods without food by metabolizing the stored fat for energy. Camels are highly adapted to desert life. They can go for weeks without water, and when they do drink, they can consume up to 40 gallons in one sitting. Their thick eyelashes, sealable nostrils, and wide, padded feet protect them from sand and help them walk easily on loose desert terrain.",
"Wines are a fascinating reflection of culture, history, and craftsmanship. They embody a rich diversity shaped by the land, climate, and traditions where they are produced. From the bold reds of Bordeaux to the crisp whites of New Zealand, each bottle tells a unique story. What makes wine so special is its ability to connect people. Whether shared at a family dinner, a celebratory event, or a quiet evening with friends, wine enhances experiences and brings people together. The variety of flavors and aromas, influenced by grape type, fermentation techniques, and aging processes, make wine tasting a complex yet rewarding journey for the senses.",
"I find artificial intelligence (AI) to be one of the most transformative and fascinating technologies of our time. Its potential spans a wide range of applications, from automating mundane tasks to revolutionizing industries like healthcare, education, and entertainment. AI has already made significant contributions in fields like language processing, image recognition, and decision-making systems, enabling innovations that were once purely science fiction. However, as powerful as AI can be, it also brings challenges and responsibilities. Ethical considerations, such as bias in data, transparency, and the potential for misuse, need to be carefully addressed to ensure fairness and accountability. The rise of generative AI has also sparked debates about creativity, originality, and intellectual property, making it essential to strike a balance between technological advancement and respecting human contributions."
]
Human_texts = [
"The present book is intended as a text in basic mathematics. As such, it can have multiple use: for a one-year course in the high schools during the third or fourth year (if possible the third, so that calculus can be taken during the fourth year); for a complementary reference in earlier high school grades (elementary algebra and geometry are covered); for a one-semester course at the college level, to review or to get a firm foundation in the basic mathematics necessary to go ahead in calculus, linear algebra, or other topics. Years ago, the colleges used to give courses in β college algebraβ and other subjects which should have been covered in high school. More recently, such courses have been thought unnecessary, but some experiences I have had show that they are just as necessary as ever. What is happening is that thecolleges are getting a wide variety of students from high schools, ranging from exceedingly well-prepared ones who have had a good first course in calculus, down to very poorly prepared ones. T",
"Fats are rich in energy, build body cells, support brain development of infants, help body processes, and facilitate the absorption and use of fat-soluble vitamins A, D, E, and K. The major component of lipids is glycerol and fatty acids. According to chemical properties, fatty acids can be divided into saturated and unsaturated fatty acids. Generally lipids containing saturated fatty acids are solid at room temperature and include animal fats (butter, lard, tallow, ghee) and tropical oils (palm,coconut, palm kernel). Saturated fats increase the risk of heart disease."
]
iface = gr.Blocks(css="""
@import url('https://fonts.googleapis.com/css2?family=Roboto+Mono:wght@400;700&display=swap');
#text_input_box {
border-radius: 10px;
border: 2px solid #4CAF50;
font-size: 18px;
padding: 15px;
margin-bottom: 20px;
width: 60%;
box-sizing: border-box;
margin: auto;
}
.form.svelte-633qhp {
background: none;
border: none;
box-shadow: none;
}
#result_output_box {
border-radius: 10px;
border: 2px solid #4CAF50;
font-size: 18px;
padding: 15px;
margin-top: 20px;
width: 40%;
box-sizing: border-box;
text-align: center;
margin: auto;
}
@media (max-width: 768px) {
#result_output_box {
width: 100%;
}
#text_input_box{
width: 100%;
}
}
body {
font-family: 'Roboto Mono', sans-serif !important;
padding: 20px;
display: block;
justify-content: center;
align-items: center;
height: 100vh;
overflow-y: auto;
}
.gradio-container {
border: 1px solid #4CAF50;
border-radius: 15px;
padding: 30px;
box-shadow: 0px 0px 10px rgba(0,255,0,0.6);
max-width: 600px;
margin: auto;
overflow-y: auto;
}
h1 {
text-align: center;
font-size: 32px;
font-weight: bold;
margin-bottom: 30px;
}
.highlight-human {
color: #4CAF50;
font-weight: bold;
background: rgba(76, 175, 80, 0.2);
padding: 5px;
border-radius: 8px;
}
.highlight-ai {
color: #FF5733;
font-weight: bold;
background: rgba(255, 87, 51, 0.2);
padding: 5px;
border-radius: 8px;
}
#bottom_text {
text-align: center;
margin-top: 50px;
font-weight: bold;
font-size: 20px;
}
.block.svelte-11xb1hd{
background: none !important;
}
""")
with iface:
gr.Markdown(f"# {title}")
gr.Markdown(description)
text_input = gr.Textbox(label="", placeholder="Type or paste your content here...", elem_id="text_input_box", lines=5)
result_output = gr.Markdown("**Results will appear here...**", elem_id="result_output_box")
text_input.change(classify_text, inputs=text_input, outputs=result_output)
with gr.Tab("AI text examples"):
gr.Examples(AI_texts, inputs=text_input)
with gr.Tab("Human text examples"):
gr.Examples(Human_texts, inputs=text_input)
gr.Markdown(bottom_text, elem_id="bottom_text")
iface.launch(share=True)
|