Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
model_path = "modernbert.bin" | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base") | |
model = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model.to(device) | |
model.eval() | |
label_mapping = { | |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b', | |
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b', | |
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small', | |
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it', | |
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o', | |
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b', | |
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b', | |
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b', | |
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b', | |
39: 'text-davinci-002', 40: 'text-davinci-003' | |
} | |
def classify_text(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True) | |
inputs = {key: value.to(device) for key, value in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.softmax(outputs.logits, dim=1)[0] | |
predicted_class = torch.argmax(probabilities).item() | |
confidence = probabilities[predicted_class].item() * 100 | |
if predicted_class == 24: | |
prediction_label = f"β - The text is <span class='highlight-human'>**{confidence:.2f}%** likely <b>Human written</b>.</span>" | |
model_info = "" | |
else: | |
prediction_label = f"π€ - The text is <span class='highlight-ai'>**{confidence:.2f}%** likely <b>AI generated</b>.</span>" | |
model_info = f"**Identified AI Model:** {label_mapping[predicted_class]}" | |
result_message = f"**Result:**\n\n{prediction_label}" | |
if model_info: | |
result_message += f"\n\n{model_info}" | |
return result_message | |
title = "Detect AI Generated Texts!" | |
description = """ | |
Detect AI-generated texts with precision using the new **ModernBERT** model, fine-tuned for machine-generated text detection, and capable of identifying 40 different models. | |
βοΈ **Identify AI Models:** Reveals which LLM generated the text if detected as AI. | |
βοΈ **Human Verification:** Marks human-written text with a green checkmark. | |
**Note:** The longer the text, the better the detection accuracy. | |
""" | |
bottom_text = "**AI detection tool by SzegedAI**" | |
iface = gr.Blocks(css=""" | |
#text_input_box { | |
border-radius: 10px; | |
border: 2px solid #4CAF50; | |
font-size: 18px; | |
padding: 15px; | |
margin-bottom: 20px; | |
width: 60%; | |
box-sizing: border-box; | |
margin: auto; | |
background-color: #1E1E2F; | |
} | |
#result_output_box { | |
border-radius: 10px; | |
border: 2px solid #4CAF50; | |
font-size: 18px; | |
padding: 15px; | |
background-color: #2E2E3F; | |
margin-top: 20px; | |
width: 40%; | |
box-sizing: border-box; | |
text-align: center; | |
margin: auto; | |
} | |
.form.svelte-633qhp { | |
background: none; | |
border: none; | |
box-shadow: none; | |
} | |
body { | |
background: #1E1E2F; | |
color: #E1E1E6; | |
font-family: 'Aptos', sans-serif; | |
padding: 20px; | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
height: 100vh; | |
} | |
.gradio-container { | |
border: 2px solid #4CAF50; | |
border-radius: 15px; | |
padding: 30px; | |
box-shadow: 0px 0px 20px rgba(0,255,0,0.6); | |
max-width: 700px; | |
margin: auto; | |
} | |
h1 { | |
text-align: center; | |
font-size: 36px; | |
font-weight: bold; | |
} | |
h2 { | |
text-align: left; | |
font-size: 28px; | |
} | |
.highlight-human { | |
color: #4CAF50; | |
font-weight: bold; | |
background: rgba(76, 175, 80, 0.2); | |
padding: 5px; | |
border-radius: 8px; | |
} | |
.highlight-ai { | |
color: #FF5733; | |
font-weight: bold; | |
background: rgba(255, 87, 51, 0.2); | |
padding: 5px; | |
border-radius: 8px; | |
} | |
#bottom_text { | |
text-align: center; | |
margin-top: 50px; | |
font-weight: bold; | |
font-size: 20px; | |
color: #E1E1E6; | |
} | |
""") | |
with iface: | |
gr.Markdown(f"# {title}") | |
gr.Markdown(description) | |
text_input = gr.Textbox(label="Enter Text for Analysis", placeholder="Type or paste your content here...", elem_id="text_input_box", lines=5) | |
result_output = gr.Markdown("**Results will appear here...**", elem_id="result_output_box") | |
text_input.change(classify_text, inputs=text_input, outputs=result_output) | |
gr.Markdown(bottom_text, elem_id="bottom_text") | |
iface.launch(share=True) | |