|
import argparse, os, sys, glob |
|
import datetime, time |
|
from omegaconf import OmegaConf |
|
from tqdm import tqdm |
|
from einops import rearrange, repeat |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
from pytorch_lightning import seed_everything |
|
from PIL import Image |
|
sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) |
|
from lvdm.models.samplers.ddim import DDIMSampler |
|
from lvdm.models.samplers.ddim_multiplecond import DDIMSampler as DDIMSampler_multicond |
|
from utils.utils import instantiate_from_config |
|
|
|
|
|
def get_filelist(data_dir, postfixes): |
|
patterns = [os.path.join(data_dir, f"*.{postfix}") for postfix in postfixes] |
|
file_list = [] |
|
for pattern in patterns: |
|
file_list.extend(glob.glob(pattern)) |
|
file_list.sort() |
|
return file_list |
|
|
|
def load_model_checkpoint(model, ckpt): |
|
state_dict = torch.load(ckpt, map_location="cpu") |
|
if "state_dict" in list(state_dict.keys()): |
|
state_dict = state_dict["state_dict"] |
|
try: |
|
model.load_state_dict(state_dict, strict=True) |
|
except: |
|
|
|
new_pl_sd = OrderedDict() |
|
for k,v in state_dict.items(): |
|
new_pl_sd[k] = v |
|
|
|
for k in list(new_pl_sd.keys()): |
|
if "framestride_embed" in k: |
|
new_key = k.replace("framestride_embed", "fps_embedding") |
|
new_pl_sd[new_key] = new_pl_sd[k] |
|
del new_pl_sd[k] |
|
model.load_state_dict(new_pl_sd, strict=True) |
|
else: |
|
|
|
new_pl_sd = OrderedDict() |
|
for key in state_dict['module'].keys(): |
|
new_pl_sd[key[16:]]=state_dict['module'][key] |
|
model.load_state_dict(new_pl_sd) |
|
print('>>> model checkpoint loaded.') |
|
return model |
|
|
|
def load_prompts(prompt_file): |
|
f = open(prompt_file, 'r') |
|
prompt_list = [] |
|
for idx, line in enumerate(f.readlines()): |
|
l = line.strip() |
|
if len(l) != 0: |
|
prompt_list.append(l) |
|
f.close() |
|
return prompt_list |
|
|
|
def load_data_prompts(data_dir, video_size=(256,256), video_frames=16, gfi=False): |
|
transform = transforms.Compose([ |
|
transforms.Resize(min(video_size)), |
|
transforms.CenterCrop(video_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]) |
|
|
|
prompt_file = get_filelist(data_dir, ['txt']) |
|
assert len(prompt_file) > 0, "Error: found NO prompt file!" |
|
|
|
default_idx = 0 |
|
default_idx = min(default_idx, len(prompt_file)-1) |
|
if len(prompt_file) > 1: |
|
print(f"Warning: multiple prompt files exist. The one {os.path.split(prompt_file[default_idx])[1]} is used.") |
|
|
|
|
|
|
|
file_list = get_filelist(data_dir, ['jpg', 'png', 'jpeg', 'JPEG', 'PNG']) |
|
|
|
data_list = [] |
|
filename_list = [] |
|
prompt_list = load_prompts(prompt_file[default_idx]) |
|
n_samples = len(prompt_list) |
|
for idx in range(n_samples): |
|
image = Image.open(file_list[idx]).convert('RGB') |
|
image_tensor = transform(image).unsqueeze(1) |
|
frame_tensor = repeat(image_tensor, 'c t h w -> c (repeat t) h w', repeat=video_frames) |
|
|
|
data_list.append(frame_tensor) |
|
_, filename = os.path.split(file_list[idx]) |
|
filename_list.append(filename) |
|
|
|
return filename_list, data_list, prompt_list |
|
|
|
|
|
def save_results(prompt, samples, filename, fakedir, fps=8, loop=False): |
|
filename = filename.split('.')[0]+'.mp4' |
|
prompt = prompt[0] if isinstance(prompt, list) else prompt |
|
|
|
|
|
videos = [samples] |
|
savedirs = [fakedir] |
|
for idx, video in enumerate(videos): |
|
if video is None: |
|
continue |
|
|
|
video = video.detach().cpu() |
|
video = torch.clamp(video.float(), -1., 1.) |
|
n = video.shape[0] |
|
video = video.permute(2, 0, 1, 3, 4) |
|
if loop: |
|
video = video[:-1,...] |
|
|
|
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in video] |
|
grid = torch.stack(frame_grids, dim=0) |
|
grid = (grid + 1.0) / 2.0 |
|
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) |
|
path = os.path.join(savedirs[idx], filename) |
|
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) |
|
|
|
|
|
def save_results_seperate(prompt, samples, filename, fakedir, fps=10, loop=False): |
|
prompt = prompt[0] if isinstance(prompt, list) else prompt |
|
|
|
|
|
videos = [samples] |
|
savedirs = [fakedir] |
|
for idx, video in enumerate(videos): |
|
if video is None: |
|
continue |
|
|
|
video = video.detach().cpu() |
|
if loop: |
|
video = video[:,:,:-1,...] |
|
video = torch.clamp(video.float(), -1., 1.) |
|
n = video.shape[0] |
|
for i in range(n): |
|
grid = video[i,...] |
|
grid = (grid + 1.0) / 2.0 |
|
grid = (grid * 255).to(torch.uint8).permute(1, 2, 3, 0) |
|
path = os.path.join(savedirs[idx].replace('samples', 'samples_separate'), f'{filename.split(".")[0]}_sample{i}.mp4') |
|
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) |
|
|
|
def get_latent_z(model, videos): |
|
b, c, t, h, w = videos.shape |
|
x = rearrange(videos, 'b c t h w -> (b t) c h w') |
|
z = model.encode_first_stage(x) |
|
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t) |
|
return z |
|
|
|
|
|
def image_guided_synthesis(model, prompts, videos, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \ |
|
unconditional_guidance_scale=1.0, cfg_img=None, fs=None, text_input=False, multiple_cond_cfg=False, loop=False, gfi=False, timestep_spacing='uniform', guidance_rescale=0.0, **kwargs): |
|
ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model) |
|
batch_size = noise_shape[0] |
|
fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=model.device) |
|
|
|
if not text_input: |
|
prompts = [""]*batch_size |
|
|
|
img = videos[:,:,0] |
|
img_emb = model.embedder(img) |
|
img_emb = model.image_proj_model(img_emb) |
|
|
|
cond_emb = model.get_learned_conditioning(prompts) |
|
cond = {"c_crossattn": [torch.cat([cond_emb,img_emb], dim=1)]} |
|
if model.model.conditioning_key == 'hybrid': |
|
z = get_latent_z(model, videos) |
|
if loop or gfi: |
|
img_cat_cond = torch.zeros_like(z) |
|
img_cat_cond[:,:,0,:,:] = z[:,:,0,:,:] |
|
img_cat_cond[:,:,-1,:,:] = z[:,:,-1,:,:] |
|
else: |
|
img_cat_cond = z[:,:,:1,:,:] |
|
img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2]) |
|
cond["c_concat"] = [img_cat_cond] |
|
|
|
if unconditional_guidance_scale != 1.0: |
|
if model.uncond_type == "empty_seq": |
|
prompts = batch_size * [""] |
|
uc_emb = model.get_learned_conditioning(prompts) |
|
elif model.uncond_type == "zero_embed": |
|
uc_emb = torch.zeros_like(cond_emb) |
|
uc_img_emb = model.embedder(torch.zeros_like(img)) |
|
uc_img_emb = model.image_proj_model(uc_img_emb) |
|
uc = {"c_crossattn": [torch.cat([uc_emb,uc_img_emb],dim=1)]} |
|
if model.model.conditioning_key == 'hybrid': |
|
uc["c_concat"] = [img_cat_cond] |
|
else: |
|
uc = None |
|
|
|
|
|
if multiple_cond_cfg and cfg_img != 1.0: |
|
uc_2 = {"c_crossattn": [torch.cat([uc_emb,img_emb],dim=1)]} |
|
if model.model.conditioning_key == 'hybrid': |
|
uc_2["c_concat"] = [img_cat_cond] |
|
kwargs.update({"unconditional_conditioning_img_nonetext": uc_2}) |
|
else: |
|
kwargs.update({"unconditional_conditioning_img_nonetext": None}) |
|
|
|
z0 = None |
|
cond_mask = None |
|
|
|
batch_variants = [] |
|
for _ in range(n_samples): |
|
|
|
if z0 is not None: |
|
cond_z0 = z0.clone() |
|
kwargs.update({"clean_cond": True}) |
|
else: |
|
cond_z0 = None |
|
if ddim_sampler is not None: |
|
|
|
samples, _ = ddim_sampler.sample(S=ddim_steps, |
|
conditioning=cond, |
|
batch_size=batch_size, |
|
shape=noise_shape[1:], |
|
verbose=False, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=uc, |
|
eta=ddim_eta, |
|
cfg_img=cfg_img, |
|
mask=cond_mask, |
|
x0=cond_z0, |
|
fs=fs, |
|
timestep_spacing=timestep_spacing, |
|
guidance_rescale=guidance_rescale, |
|
**kwargs |
|
) |
|
|
|
|
|
batch_images = model.decode_first_stage(samples) |
|
batch_variants.append(batch_images) |
|
|
|
batch_variants = torch.stack(batch_variants) |
|
return batch_variants.permute(1, 0, 2, 3, 4, 5) |
|
|
|
|
|
def run_inference(args, gpu_num, gpu_no): |
|
|
|
config = OmegaConf.load(args.config) |
|
model_config = config.pop("model", OmegaConf.create()) |
|
|
|
|
|
model_config['params']['unet_config']['params']['use_checkpoint'] = False |
|
model = instantiate_from_config(model_config) |
|
model = model.cuda(gpu_no) |
|
model.perframe_ae = args.perframe_ae |
|
assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!" |
|
model = load_model_checkpoint(model, args.ckpt_path) |
|
model.eval() |
|
|
|
|
|
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!" |
|
assert args.bs == 1, "Current implementation only support [batch size = 1]!" |
|
|
|
h, w = args.height // 8, args.width // 8 |
|
channels = model.model.diffusion_model.out_channels |
|
n_frames = args.video_length |
|
print(f'Inference with {n_frames} frames') |
|
noise_shape = [args.bs, channels, n_frames, h, w] |
|
|
|
fakedir = os.path.join(args.savedir, "samples") |
|
fakedir_separate = os.path.join(args.savedir, "samples_separate") |
|
|
|
|
|
os.makedirs(fakedir_separate, exist_ok=True) |
|
|
|
|
|
assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!" |
|
filename_list, data_list, prompt_list = load_data_prompts(args.prompt_dir, video_size=(args.height, args.width), video_frames=n_frames, gfi=args.gfi) |
|
num_samples = len(prompt_list) |
|
samples_split = num_samples // gpu_num |
|
print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples)) |
|
|
|
indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1))) |
|
prompt_list_rank = [prompt_list[i] for i in indices] |
|
data_list_rank = [data_list[i] for i in indices] |
|
filename_list_rank = [filename_list[i] for i in indices] |
|
|
|
start = time.time() |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
for idx, indice in tqdm(enumerate(range(0, len(prompt_list_rank), args.bs)), desc='Sample Batch'): |
|
prompts = prompt_list_rank[indice:indice+args.bs] |
|
videos = data_list_rank[indice:indice+args.bs] |
|
filenames = filename_list_rank[indice:indice+args.bs] |
|
if isinstance(videos, list): |
|
videos = torch.stack(videos, dim=0).to("cuda") |
|
else: |
|
videos = videos.unsqueeze(0).to("cuda") |
|
|
|
batch_samples = image_guided_synthesis(model, prompts, videos, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \ |
|
args.unconditional_guidance_scale, args.cfg_img, args.frame_stride, args.text_input, args.multiple_cond_cfg, args.loop, args.gfi, args.timestep_spacing, args.guidance_rescale) |
|
|
|
|
|
for nn, samples in enumerate(batch_samples): |
|
|
|
prompt = prompts[nn] |
|
filename = filenames[nn] |
|
|
|
save_results_seperate(prompt, samples, filename, fakedir, fps=8, loop=args.loop) |
|
|
|
print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds") |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--savedir", type=str, default=None, help="results saving path") |
|
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path") |
|
parser.add_argument("--config", type=str, help="config (yaml) path") |
|
parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts") |
|
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) |
|
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) |
|
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) |
|
parser.add_argument("--bs", type=int, default=1, help="batch size for inference, should be one") |
|
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space") |
|
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space") |
|
parser.add_argument("--frame_stride", type=int, default=3, help="frame stride control for 256 model (larger->larger motion), FPS control for 512 or 1024 model (smaller->larger motion)") |
|
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance") |
|
parser.add_argument("--seed", type=int, default=123, help="seed for seed_everything") |
|
parser.add_argument("--video_length", type=int, default=16, help="inference video length") |
|
parser.add_argument("--negative_prompt", action='store_true', default=False, help="negative prompt") |
|
parser.add_argument("--text_input", action='store_true', default=False, help="input text to I2V model or not") |
|
parser.add_argument("--multiple_cond_cfg", action='store_true', default=False, help="use multi-condition cfg or not") |
|
parser.add_argument("--cfg_img", type=float, default=None, help="guidance scale for image conditioning") |
|
parser.add_argument("--timestep_spacing", type=str, default="uniform", help="The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.") |
|
parser.add_argument("--guidance_rescale", type=float, default=0.0, help="guidance rescale in [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891)") |
|
parser.add_argument("--perframe_ae", action='store_true', default=False, help="if we use per-frame AE decoding, set it to True to save GPU memory, especially for the model of 576x1024") |
|
|
|
|
|
parser.add_argument("--loop", action='store_true', default=False, help="generate looping videos or not") |
|
parser.add_argument("--gfi", action='store_true', default=False, help="generate generative frame interpolation (gfi) or not") |
|
return parser |
|
|
|
|
|
if __name__ == '__main__': |
|
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") |
|
print("@DynamiCrafter cond-Inference: %s"%now) |
|
parser = get_parser() |
|
args = parser.parse_args() |
|
|
|
seed_everything(args.seed) |
|
rank, gpu_num = 0, 1 |
|
run_inference(args, gpu_num, rank) |