File size: 7,103 Bytes
89dc200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# -*- encoding: utf-8 -*-
'''
@File    :   pretrain_cogvideo.py
@Time    :   2021/10/06 00:58:32
@Author  :   Wenyi Hong
@Contact :   [email protected]
'''

# here put the import lib
import os
import sys
import math
import random
import torch
import argparse
import numpy as np
from icetk import icetk as tokenizer
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])

from models.cogvideo_model import CogVideoModel
from SwissArmyTransformer import mpu, get_args
from SwissArmyTransformer.training.deepspeed_training import training_main
from SwissArmyTransformer.data_utils import BinaryDataset

def get_masks_and_position_ids_video(data, attention_mask_totxt=None, args=None):
    # Extract batch size and sequence length.
    batch_size, seq_length = data.size()
    assert attention_mask_totxt is not None
    layout = args.layout
    assert seq_length == layout[-1]
    n_pads = layout[0] - attention_mask_totxt.sum(dim=-1).long()
    frame_len = layout[1]-layout[0]
    position_ids = torch.zeros(batch_size, layout[2], dtype=torch.long,
                                device=data.device)
    for i in range(batch_size):
        torch.arange(layout[0] - n_pads[i], out=position_ids[i, n_pads[i]:layout[0]], 
            dtype=torch.long, device=data.device)
        torch.arange(512, 512+layout[2]-layout[0], 
            out=position_ids[i, layout[0]:], dtype=torch.long, device=data.device)
    return position_ids


def get_batch(data_iterator, args, timers):
    # Items and their type.
    keys = ['text', 'loss_mask', 'attention_mask_totxt']
    datatype = torch.int64

    # Broadcast data.
    timers('data loader').start()
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    timers('data loader').stop()

    data_b = mpu.broadcast_data(keys, data, datatype)
    # Unpack.
    tokens_ = data_b['text'].long()
    loss_mask = data_b['loss_mask'].float()
    attention_mask_totxt = data_b['attention_mask_totxt'].float()

    labels = tokens_[:, 1:].clone().contiguous()
    loss_mask = loss_mask[:, 1:].contiguous()
    tokens = tokens_[:, :-1].clone().contiguous()
    
    for idx in range(args.layout[0], args.layout[2], 400):
        tokens[:, idx] = tokenizer['<start_of_image>']
    # Get the masks and postition ids.
    position_ids = get_masks_and_position_ids_video(
        tokens,
        attention_mask_totxt=attention_mask_totxt,
        args=args
        )
    attention_mask_totxt = attention_mask_totxt.unsqueeze(1).unsqueeze(1)
    # Convert
    if args.fp16:
        attention_mask_totxt = attention_mask_totxt.half()
    return tokens, labels, loss_mask, attention_mask_totxt, position_ids


def forward_step(data_iterator, model, args, timers):
    """Forward step."""

    # Get the batch.
    timers('batch generator').start()
    tokens, labels, loss_mask, attention_mask_totxt, position_ids = get_batch(
        data_iterator, args, timers)
    timers('batch generator').stop()

    # Forward model.
    logits, *mems = model(tokens, position_ids, attention_mask_totxt)
    # ======= hyper params =======#
    perframe_len = 400
    text_len=64
    frame_num = 5
    logits_img_tokens = logits[:, text_len:, :tokenizer.num_image_tokens].float().contiguous()
    losses = mpu.vocab_parallel_cross_entropy(logits_img_tokens, labels[:, text_len:])
    # scaling loss mask
    loss_mask = loss_mask[:, text_len:].reshape(-1)  

    losses_1d = losses.reshape(-1) * loss_mask
    loss = torch.sum(losses_1d) / loss_mask.sum()
    # =====================   Log partial losses   ======================== #
    log_loss_dict = {}
    bs = losses.shape[0]

    if args.cogvideo_stage == 1:
        for i in range(frame_num):
            log_loss_dict[f'AR_f{i}_loss'] = losses[:, i*perframe_len:(i+1)*perframe_len].contiguous().reshape(-1).detach().sum() / max((perframe_len*bs), 1) 
    else:
        for i in range(1, frame_num-1):
            log_loss_dict[f'ITP_f{i}_loss'] = losses[:, i*perframe_len:(i+1)*perframe_len].contiguous().reshape(-1).detach().sum() / max((perframe_len*bs), 1) 
 
    # ===================== END OF BLOCK ======================= #
    return loss, log_loss_dict
    

def create_dataset_function(path, args):
    dataset_layout = [64, 464, 2064]
    input_layout = [64, 464, 2064]
    # frame_num = 6
    # frame_interval = 2 # DEBUG!!!
    def process_fn(row):
        row = row.astype(np.int64)
        text = row[:dataset_layout[0]]
        frames = row[dataset_layout[0]:]
        
        if text[0] == tokenizer['<pad>']:
            text = text[1:] # due to our way of data processing
        if args.cogvideo_stage == 1:
            text, loss_mask, frames = make_text_video_generation(text, frames)
        else: 
            text, loss_mask, frames = mask_video_frame_interpolation(text, frames)
            
        n_pad = input_layout[0] - len(text)
        parts = [
            np.array([tokenizer['<pad>']] * n_pad, dtype=np.int64),
            text,
            np.array([tokenizer['<start_of_image>']], dtype=np.int64),
            frames,
        ]
        ret = np.concatenate(parts, axis=0)
        
        attention_mask_totxt = np.array([0] * n_pad + [1] * (input_layout[0]-n_pad))
        return {'text': ret, 
            'loss_mask':  loss_mask,
            'attention_mask_totxt': attention_mask_totxt,
            }
    return BinaryDataset(path, process_fn, length_per_sample=dataset_layout[-1])

def make_text_video_generation(text, frames):
    input_layout = [64, 464, 2064]
    text = text[text!= tokenizer['<pad>']][:input_layout[0]] # dataset format: 1.0秒<n>{text}<pad><pad> ... 
    loss_mask = np.array([0] * (input_layout[1]+1) + [1] * (input_layout[2] - input_layout[1])) # 按照input的,之后loss_mask会左移一位
    return text, loss_mask, frames

def mask_video_frame_interpolation(text, frames):
    input_layout = [64, 464, 2064]
    frame_len = input_layout[1]-input_layout[0]
    # text format: <pad> 1.0秒 <n> {text} <pad> <pad>
    text = text[text!= tokenizer['<pad>']][:input_layout[0]]
    loss_mask = np.array([0] * (input_layout[1]+1) 
                        + [1] * (input_layout[1]-input_layout[0])
                        + [0] * (input_layout[1]-input_layout[0])
                        + [1] * (input_layout[1]-input_layout[0])
                        + [0] * (input_layout[1]-input_layout[0]) )# 按照input的,之后loss_mask会左移一位
        
    return text, loss_mask, frames
    


if __name__ == '__main__':    
    py_parser = argparse.ArgumentParser(add_help=False)
    py_parser.add_argument('--txt-loss-scale', type=float, default=1)    
    CogVideoModel.add_model_specific_args(py_parser)
    
    known, args_list = py_parser.parse_known_args()
    
    args = get_args(args_list)
    args = argparse.Namespace(**vars(args), **vars(known))
    
    args.layout = [int(x) for x in args.layout.split(',')]
    
    training_main(args, model_cls=CogVideoModel, forward_step_function=forward_step, create_dataset_function=create_dataset_function)