Spaces:
Running
Running
# -*- encoding: utf-8 -*- | |
''' | |
@File : itersr_sampling.py | |
@Time : 2022/03/03 14:24:28 | |
@Author : Ming Ding | |
@Contact : [email protected] | |
''' | |
# here put the import lib | |
import os | |
import sys | |
import math | |
import random | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from icetk import icetk as tokenizer | |
def top_k_logits_(logits, top_k=0, filter_value=-float('Inf')): | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
return logits | |
# class IterativeEntfilterStrategy: | |
# def __init__(self, invalid_slices=[], temperature=1., topk=10): | |
# self.invalid_slices = invalid_slices | |
# self.temperature = temperature | |
# self.topk = topk | |
# self.cluster_labels = torch.tensor(np.load('cluster_label.npy'), device='cuda', dtype=torch.long) | |
# def forward(self, logits_, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None): | |
# # In interative strategy, logits are of shape [batch_size, seq_length, hidden_size] | |
# if temperature is None: | |
# temperature = self.temperature | |
# logits = logits_.float() / temperature | |
# for invalid_slice in self.invalid_slices: | |
# logits[..., invalid_slice] = -float('Inf') | |
# logits = logits.view(-1, logits.shape[-1]) | |
# rprobs = F.softmax(logits.float(), dim=-1) | |
# c = self.cluster_labels.expand(*rprobs.shape) | |
# cprobs = torch.zeros(logits.shape[0], 500, device=logits.device).scatter_add_(1, c, rprobs) | |
# best_scores, best_clusters = cprobs.topk(self.topk) | |
# bz = logits.shape[0] | |
# best_scores = best_scores / best_scores.sum(dim=-1, keepdim=True) | |
# sampled_ids = torch.multinomial(best_scores, num_samples=1) | |
# selected_clusters = torch.gather(best_clusters, dim=1, index=sampled_ids) | |
# selected_mask = (self.cluster_labels.unsqueeze(0).expand(bz, -1) != selected_clusters) # cluster_labels [1, 20000] \in [0,500) | |
# logits[selected_mask] = -65504 | |
# # for i in range(bz): | |
# # selected_cluster = best_clusters[i][torch.multinomial(best_scores[i] / best_scores[i].sum(), num_samples=1)] | |
# # logits[i, self.cluster_labels != selected_cluster] = -65504 | |
# # logits = top_k_logits(logits, self.topk, self.top_p) | |
# probs = F.softmax(logits.float(), dim=-1) # float is essetial, due to a bug in Pytorch | |
# pred = torch.multinomial(probs, num_samples=1).view(*logits_.shape[:2]) | |
# assert tokens.shape[1] == pred.shape[1] | |
# tokens = pred | |
# return tokens | |
class IterativeEntfilterStrategy: | |
def __init__(self, invalid_slices=[], temperature=1., topk=10): | |
self.invalid_slices = invalid_slices | |
self.temperature = temperature | |
self.topk = topk | |
def forward(self, logits, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None): | |
# In interative strategy, logits are of shape [batch_size, seq_length, hidden_size] | |
if temperature is None: | |
temperature = self.temperature | |
# check entropy filter | |
# if entfilter is not None: | |
# assert temperature2 is not None | |
# topraw = (torch.topk(logits, filter_topk, dim=-1)[0]).softmax(dim=-1) | |
# ent = -(topraw * topraw.log()).sum(dim=-1) # [batch_size, seq_length] | |
# temperature = torch.tensor([[[temperature - temperature2]]], device=logits.device).expand(*logits.shape[:2], 1) * (ent > entfilter).unsqueeze(-1) + temperature2 | |
logits = logits.float() / temperature | |
for invalid_slice in self.invalid_slices: | |
logits[..., invalid_slice] = -float('Inf') | |
# debiased topk | |
# probs = F.softmax(logits, dim=-1) | |
# tk_value, tk_idx = torch.topk(probs, self.topk, dim=-1) | |
# pred = torch.multinomial(probs.view(-1, logits.shape[-1]), num_samples=1).view(*logits.shape[:2], 1) | |
# edge_idx = tk_idx[:, :, -1:] | |
# edge_value = tk_value[:, :, -1:] | |
# edge_mask = probs.gather(dim=-1, index=pred) < edge_value | |
# pred[edge_mask] = edge_idx[edge_mask] # replace outliers as the "filter_topk"-th token | |
# pred.squeeze_(-1) # [batch_size, seq_length] | |
top_k_logits_(logits, self.topk) | |
probs = F.softmax(logits, dim=-1) | |
pred = torch.multinomial(probs.view(-1, logits.shape[-1]), num_samples=1).view(*logits.shape[:2], 1) | |
pred.squeeze_(-1) | |
assert tokens.shape[1] == pred.shape[1] | |
tokens = pred | |
return tokens | |
def filling_sequence_itersr( | |
model, | |
seq0, | |
seq1, | |
warmup_steps=3, | |
block_hw=(4, 4), | |
strategy=IterativeEntfilterStrategy(topk=10), | |
): | |
''' | |
seq: [PAD]... [ROI1] text ... [BOI1] {layout[0]} 1024 {layout[1]} [EOI1] | |
4095 {layout[2]} final_token. | |
Attention: | |
The sampling temperature are changing, temporally we hard code them here. | |
The temperature in the strategy is not used. | |
''' | |
assert hasattr(model, 'layout') | |
layout = model.layout | |
device = seq0.device | |
# concat and pad sequences | |
batch_size = seq0.shape[0] | |
n_pad = layout[0] - seq0.shape[1] | |
assert n_pad >= 0, "You should truncate long input before filling." | |
seq = torch.cat(( | |
torch.tensor([0]*n_pad, device=device, dtype=seq0.dtype) | |
.unsqueeze(0).expand(batch_size, n_pad), | |
seq0, seq1), dim=1) # [b, layout[-1]+1] | |
assert seq.shape[1] == layout[-1] | |
# build initial tokens, attention_mask, and position_ids | |
tokens = seq.clone() | |
attention_mask = torch.ones(layout[0]).to(device) | |
attention_mask[:n_pad] = 0 | |
attention_mask = attention_mask.unsqueeze(0).type_as(next(model.parameters())) # if fp16 | |
position_ids = torch.cat(( | |
torch.zeros(n_pad, dtype=torch.long), | |
torch.arange(0, layout[0] - n_pad), | |
torch.arange(1024, 1024+layout[1]-layout[0]))).to(device) | |
log_attention_weights = torch.zeros(layout[0], device=device).type_as(next(model.parameters())) | |
log_attention_weights[n_pad:layout[0]] = 0. | |
log_attention_weights = log_attention_weights.unsqueeze(0) | |
# prepare for interation | |
unfixed = (tokens == tokenizer['<start_of_image>']) | |
ll, rr = block_hw | |
edge_len = int(math.sqrt(layout[-1] - layout[-2]) + 1e-4) | |
num_steps = 1 | |
# interative refining | |
# unfixed[..., -(layout[-1] - layout[-2]):].view( | |
# batch_size, edge_len//ll, ll, edge_len//rr, rr)[:, :, :, :, -1] = False | |
ret = [] | |
# ret.append(tokens[:, layout[-2]:-1].clone()) | |
for step_cnt in range(1, num_steps+1): | |
logits, *_dump = model(tokens, position_ids, attention_mask, log_attention_weights=log_attention_weights) | |
real_temp = 1. | |
new_tokens = strategy.forward(logits, tokens, real_temp) | |
tokens[unfixed] = new_tokens[unfixed] | |
ret.append(tokens[:, layout[-2]:].clone()) | |
return torch.cat(ret, dim=0) |