Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,389 Bytes
1618caf 745d2d6 223aac8 745d2d6 27eb560 745d2d6 40fcdeb 745d2d6 f259fac 745d2d6 d28df4f 745d2d6 35e6890 649a916 745d2d6 08e8c65 745d2d6 3724fda 745d2d6 27eb560 223aac8 08e8c65 223aac8 745d2d6 649a916 745d2d6 223aac8 745d2d6 223aac8 745d2d6 223aac8 745d2d6 223aac8 745d2d6 223aac8 08e8c65 223aac8 62fbc58 08e8c65 745d2d6 1618caf 745d2d6 35e6890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gradio as gr
import torch
import re
import os
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import transformers
import spaces
from typing import Dict, Optional, Sequence, List
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import sys
from oryx.conversation import conv_templates, SeparatorStyle
from oryx.model.builder import load_pretrained_model
from oryx.utils import disable_torch_init
from oryx.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video_genli,process_anyres_highres_image_genli
from oryx.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
model_path = "THUdyh/Oryx-1.5-7B"
model_name = get_model_name_from_path(model_path)
overwrite_config = {}
overwrite_config["mm_resampler_type"] = "dynamic_compressor"
overwrite_config["patchify_video_feature"] = False
overwrite_config["attn_implementation"] = "sdpa" if torch.__version__ >= "2.1.2" else "eager"
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, device_map="cpu", overwrite_config=overwrite_config)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device).eval()
cur_dir = os.path.dirname(os.path.abspath(__file__))
title_markdown = """
<div style="display: flex; justify-content: left; align-items: center; text-align: left; background: linear-gradient(45deg, rgba(204,255,231, 0.8), rgba(204,255,231, 0.3)); border-radius: 10px; box-shadow: 0 8px 16px 0 rgba(0,0,0,0.1);"> <a href="https://llava-vl.github.io/blog/2024-04-30-llava-next-video/"" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://oryx-mllm.github.io/static/images/icon.png" alt="Oryx" style="max-width: 80px; height: auto; border-radius: 10px;">
</a>
<div>
<h2 ><a href="https://github.com/Oryx-mllm/Oryx">Oryx MLLM: On-Demand Spatial-Temporal Understanding at Arbitrary Resolution</a> </h2>
<h5 style="margin: 0;"><a href="https://oryx-mllm.github.io/">Project Page</a> | <a href="https://github.com/Oryx-mllm/Oryx">Github</a> | <a href="https://huggingface.co/collections/THUdyh/oryx-66ebe5d0cfb61a2837a103ff">Huggingface</a> | <a href="https://arxiv.org/abs/2409.12961">Paper</a> | <a href="https://x.com/_akhaliq/status/1836963718887866400"> Twitter </a> </h5>
</div>
</div>
"""
bibtext = """
### Citation
```
@article{liu2024oryx,
title={Oryx MLLM: On-Demand Spatial-Temporal Understanding at Arbitrary Resolution},
author={Liu, Zuyan and Dong, Yuhao and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming},
journal={arXiv preprint arXiv:2409.12961},
year={2024}
}
```
"""
def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict:
roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"}
im_start, im_end = tokenizer.additional_special_tokens_ids[:2]
nl_tokens = tokenizer("\n").input_ids
_system = tokenizer("system").input_ids + nl_tokens
_user = tokenizer("user").input_ids + nl_tokens
_assistant = tokenizer("assistant").input_ids + nl_tokens
# Apply prompt templates
input_ids, targets = [], []
source = sources
if roles[source[0]["from"]] != roles["human"]:
source = source[1:]
input_id, target = [], []
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens
input_id += system
target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens
assert len(input_id) == len(target)
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
if has_image and sentence["value"] is not None and "<image>" in sentence["value"]:
num_image = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"]))
texts = sentence["value"].split('<image>')
_input_id = tokenizer(role).input_ids + nl_tokens
for i,text in enumerate(texts):
_input_id += tokenizer(text).input_ids
if i<len(texts)-1:
_input_id += [IMAGE_TOKEN_INDEX] + nl_tokens
_input_id += [im_end] + nl_tokens
assert sum([i==IMAGE_TOKEN_INDEX for i in _input_id])==num_image
else:
if sentence["value"] is None:
_input_id = tokenizer(role).input_ids + nl_tokens
else:
_input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens
input_id += _input_id
if role == "<|im_start|>user":
_target = [im_start] + [IGNORE_INDEX] * (len(_input_id) - 3) + [im_end] + nl_tokens
elif role == "<|im_start|>assistant":
_target = [im_start] + [IGNORE_INDEX] * len(tokenizer(role).input_ids) + _input_id[len(tokenizer(role).input_ids) + 1 : -2] + [im_end] + nl_tokens
else:
raise NotImplementedError
target += _target
input_ids.append(input_id)
targets.append(target)
input_ids = torch.tensor(input_ids, dtype=torch.long)
targets = torch.tensor(targets, dtype=torch.long)
return input_ids
@spaces.GPU(duration=120)
def oryx_inference(multimodal):
visual, text = multimodal["files"][0], multimodal["text"]
if visual.endswith("case/image2.png"):
modality = "video"
visual = f"{cur_dir}/case/case1.mp4"
if visual.endswith(".mp4"):
modality = "video"
else:
modality = "image"
if modality == "video":
vr = VideoReader(visual, ctx=cpu(0))
total_frame_num = len(vr)
fps = round(vr.get_avg_fps())
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
spare_frames = vr.get_batch(frame_idx).asnumpy()
video = [Image.fromarray(frame) for frame in spare_frames]
else:
image = [Image.open(visual)]
image_sizes = [image[0].size]
conv_mode = "qwen_1_5"
question = text
question = "<image>\n" + question
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = preprocess_qwen([{'from': 'human','value': question},{'from': 'gpt','value': None}], tokenizer, has_image=True).to(device)
if modality == "video":
video_processed = []
for idx, frame in enumerate(video):
image_processor.do_resize = False
image_processor.do_center_crop = False
frame = process_anyres_video_genli(frame, image_processor)
if frame_idx is not None and idx in frame_idx:
video_processed.append(frame.unsqueeze(0))
elif frame_idx is None:
video_processed.append(frame.unsqueeze(0))
if frame_idx is None:
frame_idx = np.arange(0, len(video_processed), dtype=int).tolist()
video_processed = torch.cat(video_processed, dim=0).bfloat16().to(device)
video_processed = (video_processed, video_processed)
video_data = (video_processed, (384, 384), "video")
else:
image_processor.do_resize = False
image_processor.do_center_crop = False
image_tensor, image_highres_tensor = [], []
for visual in image:
image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor)
image_tensor.append(image_tensor_)
image_highres_tensor.append(image_highres_tensor_)
if all(x.shape == image_tensor[0].shape for x in image_tensor):
image_tensor = torch.stack(image_tensor, dim=0)
if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor):
image_highres_tensor = torch.stack(image_highres_tensor, dim=0)
if type(image_tensor) is list:
image_tensor = [_image.bfloat16().to(device) for _image in image_tensor]
else:
image_tensor = image_tensor.bfloat16().to(device)
if type(image_highres_tensor) is list:
image_highres_tensor = [_image.bfloat16().to(device) for _image in image_highres_tensor]
else:
image_highres_tensor = image_highres_tensor.bfloat16().to(device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
with torch.inference_mode():
if modality == "video":
output_ids = model.generate(
inputs=input_ids,
images=video_data[0][0],
images_highres=video_data[0][1],
modalities=video_data[2],
do_sample=False,
temperature=0,
max_new_tokens=1024,
use_cache=True,
)
else:
output_ids = model.generate(
inputs=input_ids,
images=image_tensor,
images_highres=image_highres_tensor,
image_sizes=image_sizes,
modalities=['image'],
do_sample=False,
temperature=0,
max_new_tokens=1024,
use_cache=True,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
return outputs
# Define input and output for the Gradio interface
demo = gr.Interface(
fn=oryx_inference,
inputs=gr.MultimodalTextbox(file_types=[".mp4", "image"],placeholder="Enter message or upload file..."),
outputs="text",
examples=[
{
"files":[f"{cur_dir}/case/image2.png"],
"text":"Describe what is happening in this video in detail.",
},
{
"files":[f"{cur_dir}/case/image.png"],
"text":"Describe this icon.",
},
],
title="Oryx-7B Demo",
description=title_markdown,
article=bibtext,
)
# Launch the Gradio app
demo.launch()
|