File size: 20,370 Bytes
d9c19b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
import torch
import torch.nn as nn

import importlib.metadata

from torch.utils.data import Sampler


from transformers import Trainer
from transformers.trainer import (
    is_sagemaker_mp_enabled,
    get_parameter_names,
    has_length,
    ALL_LAYERNORM_LAYERS,
    logger,
)
from transformers.trainer_pt_utils import get_length_grouped_indices as get_length_grouped_indices_hf
from typing import List, Optional

from transformers.trainer_pt_utils import (
    get_dataloader_sampler,
    get_model_param_count,
    get_parameter_names,
)

from transformers.training_args import ParallelMode
from transformers.utils import (
    is_peft_available,
    is_accelerate_available,
    is_sagemaker_mp_enabled,
    is_torch_xla_available,
)

from transformers.trainer_utils import (
    HPSearchBackend,
    TrainOutput,
    has_length,
    speed_metrics,
)

from packaging import version

from peft import PeftModel

TIME_STAMP = os.environ.get('TIME_STAMP', 'default_value')
BYTENAS = os.environ.get('BYTENAS', 'vl-research')

def maybe_zero_3(param, ignore_status=False, name=None):
    from deepspeed import zero
    from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
    if hasattr(param, "ds_id"):
        if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if not ignore_status:
                print(name, 'no ignore status')
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
    to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
    to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
    return to_return


def split_to_even_chunks(indices, lengths, num_chunks):
    """
    Split a list of indices into `chunks` chunks of roughly equal lengths.
    """

    if len(indices) % num_chunks != 0:
        return [indices[i::num_chunks] for i in range(num_chunks)]

    num_indices_per_chunk = len(indices) // num_chunks

    chunks = [[] for _ in range(num_chunks)]
    chunks_lengths = [0 for _ in range(num_chunks)]
    for index in indices:
        shortest_chunk = chunks_lengths.index(min(chunks_lengths))
        chunks[shortest_chunk].append(index)
        chunks_lengths[shortest_chunk] += lengths[index]
        if len(chunks[shortest_chunk]) == num_indices_per_chunk:
            chunks_lengths[shortest_chunk] = float("inf")

    return chunks


def get_variable_length_grouped_indices(lengths, batch_size, world_size, megabatch_mult = 8, generator=None):
    # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
    indices = torch.randperm(len(lengths), generator=generator)
    sorted_indices = sorted(range(len(lengths)), key=lambda i: lengths[i], reverse=True)
    megabatch_size = world_size * batch_size * megabatch_mult
    megabatches = [sorted_indices[i : i + megabatch_size] for i in range(0, len(lengths), megabatch_size)]
    megabatches = [sorted(megabatch, key=lambda i: indices[i], reverse=True) for megabatch in megabatches]
    shuffled_indices = [i for megabatch in megabatches for i in megabatch]
    world_batch_size = world_size * batch_size
    batches = [shuffled_indices[i : i + world_batch_size] for i in range(0, len(lengths), world_batch_size)]
    batch_indices = torch.randperm(len(batches), generator=generator)
    batches = [batches[i] for i in batch_indices]

    return [i for batch in batches for i in batch]


def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):
    """
    Return a list of indices so that each slice of `batch_size` consecutive indices correspond to elements of similar
    lengths. To do this, the indices are:

    - randomly permuted
    - grouped in mega-batches of size `mega_batch_mult * batch_size`
    - reorder by length in each mega-batch

    The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of
    maximum length placed first, so that an OOM happens sooner rather than later.
    """

    # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
    assert all(l != 0 for l in lengths), "Should not have zero length."
    if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
        # all samples are in the same modality
        return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator)
    mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
    lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])

    mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)]
    lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)]
    megabatch_size = world_size * batch_size
    mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)]
    lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)]

    last_mm = mm_megabatches[-1]
    last_lang = lang_megabatches[-1]
    additional_batch = last_mm + last_lang
    megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
    megabatch_indices = torch.randperm(len(megabatches), generator=generator)
    megabatches = [megabatches[i] for i in megabatch_indices]

    if len(additional_batch) > 0:
        megabatches.append(sorted(additional_batch))

    return [i for megabatch in megabatches for i in megabatch]


def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
    """
    Return a list of indices so that each slice of `batch_size` consecutive indices correspond to elements of similar
    lengths. To do this, the indices are:

    - randomly permuted
    - grouped in mega-batches of size `mega_batch_mult * batch_size`
    - reorder by length in each mega-batch

    The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of
    maximum length placed first, so that an OOM happens sooner rather than later.
    """

    # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
    indices = torch.randperm(len(lengths), generator=generator)
    megabatch_size = world_size * batch_size
    megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
    megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
    megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]

    return [i for megabatch in megabatches for batch in megabatch for i in batch]


def get_length_grouped_indices_auto_single(lengths, batch_size, world_size, generator=None):
    indices = get_length_grouped_indices_hf(lengths, batch_size * world_size, generator=generator)

    megabatch_size = world_size * batch_size
    megabatches = [indices[i : i + megabatch_size] for i in range(0, len(lengths), megabatch_size)]
    megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
    megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]

    # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
    batch_indices = torch.randperm(len(megabatches), generator=generator)
    megabatches = [megabatches[i] for i in batch_indices]

    return [i for megabatch in megabatches for batch in megabatch for i in batch]


def get_modality_length_grouped_indices_auto(lengths, batch_size, world_size, generator=None):
    # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
    assert all(l != 0 for l in lengths), "Should not have zero length."
    if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
        # all samples are in the same modality
        return get_length_grouped_indices_auto_single(lengths, batch_size, world_size, generator=generator)
    mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
    lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])

    mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices_auto_single(mm_lengths, batch_size, world_size, generator=None)]
    lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices_auto_single(lang_lengths, batch_size, world_size, generator=None)]
    megabatch_size = world_size * batch_size
    mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)]
    lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)]

    last_mm = mm_megabatches[-1]
    last_lang = lang_megabatches[-1]
    additional_batch = last_mm + last_lang
    megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
    megabatch_indices = torch.randperm(len(megabatches), generator=generator)
    megabatches = [megabatches[i] for i in megabatch_indices]

    if len(additional_batch) > 0:
        megabatches.append(sorted(additional_batch))

    return [i for megabatch in megabatches for i in megabatch]


class LengthGroupedSampler(Sampler):
    r"""
    Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
    keeping a bit of randomness.
    """

    def __init__(
        self,
        batch_size: int,
        world_size: int,
        lengths: Optional[List[int]] = None,
        generator=None,
        variable_length: bool = False,
        group_by_modality: bool = False,
        group_by_modality_auto: bool = False,
    ):
        if lengths is None:
            raise ValueError("Lengths must be provided.")

        self.batch_size = batch_size
        self.world_size = world_size
        self.lengths = lengths
        self.generator = generator
        self.variable_length = variable_length
        self.group_by_modality = group_by_modality
        self.group_by_modality_auto = group_by_modality_auto

    def __len__(self):
        return len(self.lengths)

    def __iter__(self):
        if self.variable_length:
            assert not self.group_by_modality, "Variable length grouping is not supported with modality grouping."
            indices = get_variable_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
        else:
            if self.group_by_modality:
                indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
            elif self.group_by_modality_auto:
                indices = get_modality_length_grouped_indices_auto(self.lengths, self.batch_size, self.world_size, generator=self.generator)
            else:
                indices = get_length_grouped_indices_auto_single(self.lengths, self.batch_size, self.world_size, generator=self.generator)
        return iter(indices)



def _is_peft_model(model):
    if is_peft_available():
        classes_to_check = (PeftModel,) if is_peft_available() else ()
        # Here we also check if the model is an instance of `PeftMixedModel` introduced in peft>=0.7.0: https://github.com/huggingface/transformers/pull/28321
        if version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0"):
            from peft import PeftMixedModel

            classes_to_check = (*classes_to_check, PeftMixedModel)
        return isinstance(model, classes_to_check)
    return False


TRAINER_STATE_NAME = "trainer_state.json"

class OryxTrainer(Trainer):

    def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
        if self.train_dataset is None or not has_length(self.train_dataset):
            return None

        if self.args.group_by_length:
            lengths = self.train_dataset.lengths
            return LengthGroupedSampler(
                # self.args.train_batch_size * self.args.gradient_accumulation_steps, # TODO: seems that we should not have gradient_accumulation_steps
                self.args.train_batch_size,
                # world_size=self.args.world_size,
                world_size=self.args.world_size * self.args.gradient_accumulation_steps,  # TODO: seems that this may work?
                lengths=lengths,
            )
        elif self.args.group_by_modality_length:
            lengths = self.train_dataset.modality_lengths
            return LengthGroupedSampler(
                # self.args.train_batch_size * self.args.gradient_accumulation_steps, # TODO: seems that we should not have gradient_accumulation_steps
                self.args.train_batch_size,
                # world_size=self.args.world_size,
                world_size=self.args.world_size * self.args.gradient_accumulation_steps,  # TODO: seems that this may work?
                lengths=lengths,
                group_by_modality=True,
            )
        elif self.args.group_by_modality_length_auto:
            lengths = self.train_dataset.modality_lengths
            return LengthGroupedSampler(
                # self.args.train_batch_size * self.args.gradient_accumulation_steps, # TODO: seems that we should not have gradient_accumulation_steps
                self.args.train_batch_size,
                # world_size=self.args.world_size,
                world_size=self.args.world_size * self.args.gradient_accumulation_steps,  # TODO: seems that this may work?
                lengths=lengths,
                group_by_modality_auto=True,
            )
        elif self.args.group_by_varlen:
            lengths = self.train_dataset.lengths
            return LengthGroupedSampler(
                self.args.train_batch_size * self.args.gradient_accumulation_steps,
                # self.args.train_batch_size, # TODO: seems that we should have gradient_accumulation_steps
                # world_size=self.args.world_size,
                world_size=self.args.world_size * self.args.gradient_accumulation_steps,  # TODO: seems that this may work?
                lengths=lengths,
                variable_length=True,
            )
        else:
            return super()._get_train_sampler()

    def create_optimizer(self):
        """
        Setup the optimizer.

        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through `optimizers`, or subclass and override this method in a subclass.
        """
        if is_sagemaker_mp_enabled():
            return super().create_optimizer()

        opt_model = self.model

        if self.optimizer is None:
            decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
            decay_parameters = [name for name in decay_parameters if "bias" not in name]
            lr_mapper = {}
            if self.args.mm_projector_lr is not None:
                lr_mapper['mm_projector'] = self.args.mm_projector_lr
            if self.args.mm_vision_tower_lr is not None:
                lr_mapper['vision_tower'] = self.args.mm_vision_tower_lr
            if len(lr_mapper) > 0:
                special_lr_parameters = [name for name, _ in opt_model.named_parameters() if any(module_keyword in name for module_keyword in lr_mapper)]
                optimizer_grouped_parameters = [
                    {
                        "params": [
                            p for n, p in opt_model.named_parameters() if (n in decay_parameters and n not in special_lr_parameters and p.requires_grad)
                        ],
                        "weight_decay": self.args.weight_decay,
                    },
                    {
                        "params": [
                            p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n not in special_lr_parameters and p.requires_grad)
                        ],
                        "weight_decay": 0.0,
                    },
                ]
                for module_keyword, lr in lr_mapper.items():
                    module_parameters = [name for name, _ in opt_model.named_parameters() if module_keyword in name]
                    optimizer_grouped_parameters.extend([
                        {
                            "params": [
                                p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in module_parameters and p.requires_grad)
                            ],
                            "weight_decay": self.args.weight_decay,
                            "lr": lr,
                        },
                        {
                            "params": [
                                p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in module_parameters and p.requires_grad)
                            ],
                            "weight_decay": 0.0,
                            "lr": lr,
                        },
                    ])
            else:
                optimizer_grouped_parameters = [
                    {
                        "params": [
                            p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
                        ],
                        "weight_decay": self.args.weight_decay,
                    },
                    {
                        "params": [
                            p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)
                        ],
                        "weight_decay": 0.0,
                    },
                ]

            optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)

            self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
            if optimizer_cls.__name__ == "Adam8bit":
                import bitsandbytes

                manager = bitsandbytes.optim.GlobalOptimManager.get_instance()

                skipped = 0
                for module in opt_model.modules():
                    if isinstance(module, nn.Embedding):
                        skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
                        logger.info(f"skipped {module}: {skipped/2**20}M params")
                        manager.register_module_override(module, "weight", {"optim_bits": 32})
                        logger.debug(f"bitsandbytes: will optimize {module} in fp32")
                logger.info(f"skipped: {skipped/2**20}M params")

        return self.optimizer

    def _save_checkpoint(self, model, trial, metrics=None):
        if getattr(self.args, 'tune_mm_mlp_adapter', False):
            from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
            checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"

            run_dir = self._get_output_dir(trial=trial)
            output_dir = os.path.join(run_dir, checkpoint_folder)

            # Only save Adapter
            keys_to_match = ['mm_projector', 'vision_resampler']
            if getattr(self.args, "use_im_start_end", False):
                keys_to_match.extend(['embed_tokens', 'embed_in'])

            weight_to_save = get_mm_adapter_state_maybe_zero_3(self.model.named_parameters(), keys_to_match)

            if self.args.local_rank == 0 or self.args.local_rank == -1:
                self.model.config.save_pretrained(output_dir)
                torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
        else:
            print("self.is_local_process_zero()",self.is_local_process_zero())
            super(OryxTrainer, self)._save_checkpoint(model, trial, metrics)

    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        if getattr(self.args, 'tune_mm_mlp_adapter', False):
            pass
        else:
            super(OryxTrainer, self)._save(output_dir, state_dict)