File size: 6,134 Bytes
8553d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14a657
8553d06
f14a657
8553d06
 
 
 
f14a657
8553d06
 
 
f14a657
8553d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aedc60d
f14a657
 
 
 
 
8553d06
 
 
 
 
 
 
 
 
 
 
0d5512e
 
8553d06
 
 
0d5512e
 
8553d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d5512e
8553d06
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import pandas as pd
import gradio as gr
import csv
import json
import os
import shutil
from huggingface_hub import Repository
import numpy as np

# Load the JSON data
with open("./static/eval_results/all_model_keywords_stats.json", "r") as f:
    MODEL_DATA = json.load(f)

with open("./static/eval_results/all_summary.json", "r") as f:
    SUMMARY_DATA = json.load(f)


# Define model name mapping
MODEL_NAME_MAP = {
    "Claude_3.5_new": "Claude-3.5-Sonnet (1022)",
    "GPT_4o": "GPT-4o (0513)",
    "Claude_3.5": "Claude-3.5-Sonnet (0622)",
    "Gemini_1.5_pro_002": "Gemini-1.5-Pro-002",
    "InternVL2_76B": "InternVL2-Llama3-76B",
    "Qwen2_VL_72B": "Qwen2-VL-72B",
    "llava_onevision_72B": "Llava-OneVision-72B",
    "NVLM": "NVLM-72B",
    "GPT_4o_mini": "GPT-4o mini",
    "Gemini_1.5_flash_002": "Gemini-1.5-Flash-002",
    "Pixtral_12B": "Pixtral 12B",
    "Aria": "Aria-MoE-25B",
    "Qwen2_VL_7B": "Qwen2-VL-7B",
    "InternVL2_8B": "InternVL2-8B",
    "llava_onevision_7B": "Llava-OneVision-7B",
    "Llama_3_2_11B": "Llama-3.2-11B",
    "Phi-3.5-vision": "Phi-3.5-Vision",
    "MiniCPM_v2.6": "MiniCPM-V2.6",
    "Idefics3": "Idefics3-8B-Llama3",
}

# Custom name mapping for dimensions and keywords
DIMENSION_NAME_MAP = {
    "skills": "Skills",
    "input_format": "Input Format",
    "output_format": "Output Format",
    "input_num": "Visual Input Number",
    "app": "Application"
}

KEYWORD_NAME_MAP = {
    # Skills
    "Object Recognition and Classification": "Object Recognition",
    "Text Recognition (OCR)": "OCR",
    "Language Understanding and Generation": "Language",
    "Scene and Event Understanding": "Scene/Event",
    "Mathematical and Logical Reasoning": "Math/Logic",
    "Commonsense and Social Reasoning": "Commonsense",
    "Ethical and Safety Reasoning": "Ethics/Safety",
    "Domain-Specific Knowledge and Skills": "Domain-Specific",
    "Spatial and Temporal Reasoning": "Spatial/Temporal",
    "Planning and Decision Making": "Planning/Decision",
    # Input Format
    'User Interface Screenshots': "UI related", 
    'Text-Based Images and Documents': "Documents", 
    'Diagrams and Data Visualizations': "Infographics", 
    'Videos': "Videos", 
    'Artistic and Creative Content': "Arts/Creative", 
    'Photographs': "Photographs", 
    '3D Models and Aerial Imagery': "3D related",
    # Application
    'Information_Extraction': "Info Extraction", 
    'Planning' : "Planning", 
    'Coding': "Coding", 
    'Perception': "Perception", 
    'Metrics': "Metrics", 
    'Science': "Science", 
    'Knowledge': "Knowledge", 
    'Mathematics': "Math",
    # Output format
    'contextual_formatted_text': "Contexual", 
    'structured_output': "Structured", 
    'exact_text': "Exact", 
    'numerical_data': "Numerical", 
    'open_ended_output': "Open-ended", 
    'multiple_choice': "MC",
    "6-8 images": "6-8 imgs",
    "1-image": "1 img",
    "2-3 images": "2-3 imgs",
    "4-5 images": "4-5 imgs",
    "9-image or more": "9+ imgs",
    "video": "Video",
}

# Extract super groups (dimensions) and their keywords
SUPER_GROUPS = {DIMENSION_NAME_MAP[dim]: [KEYWORD_NAME_MAP.get(k, k) for k in MODEL_DATA[next(iter(MODEL_DATA))][dim].keys()] 
                for dim in MODEL_DATA[next(iter(MODEL_DATA))]}

def get_original_dimension(mapped_dimension):
    return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)

def get_original_keyword(mapped_keyword):
    return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword)

# Define model groups
MODEL_GROUPS = {
    "All": list(MODEL_DATA.keys()),
    "Flagship Models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002', 'Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM'],
    "Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'],
    "Proprietary Flagship models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002'],
    "Proprietary Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini'],
    "Open-source Flagship Models": ['Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM'],
    "Open-source Efficiency Models": ['Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'],
}

def get_display_model_name(model_name):
    return MODEL_NAME_MAP.get(model_name, model_name)

def get_df(selected_super_group, selected_model_group):
    original_dimension = get_original_dimension(selected_super_group)
    data = []
    for model in MODEL_GROUPS[selected_model_group]:
        model_data = MODEL_DATA[model]
        summary = SUMMARY_DATA[model]
        core_noncot_score = summary["core_noncot"]["macro_mean_score"]
        core_cot_score = summary["core_cot"]["macro_mean_score"]
        row = {
            "Models": get_display_model_name(model),  # Use the mapped name
            "Overall": round(summary["overall_score"] * 100, 2),
            "Core(w/o CoT)": round(core_noncot_score * 100, 2),
            "Core(w/ CoT)": round(core_cot_score * 100, 2),
            "Open-ended": round(summary["open"]["macro_mean_score"] * 100, 2)
        }
        for keyword in SUPER_GROUPS[selected_super_group]:
            original_keyword = get_original_keyword(keyword)
            if original_dimension in model_data and original_keyword in model_data[original_dimension]:
                row[keyword] = round(model_data[original_dimension][original_keyword]["average_score"] * 100, 2)
            else:
                row[keyword] = None
        data.append(row)
    
    df = pd.DataFrame(data)
    df = df.sort_values(by="Overall", ascending=False)
    return df

def get_leaderboard_data(selected_super_group, selected_model_group):
    df = get_df(selected_super_group, selected_model_group)
    headers = ["Models", "Overall", "Core(w/o CoT)", "Core(w/ CoT)", "Open-ended"] + SUPER_GROUPS[selected_super_group]
    data = df[headers].values.tolist()
    return headers, data