Spaces:
Running
Running
File size: 16,001 Bytes
8553d06 eeb88fb 2a2ba62 8553d06 eeb88fb 8553d06 f14a657 8553d06 b4acc8e 8553d06 4301eca 8553d06 f14a657 8553d06 eeb88fb ba3cd85 8553d06 4301eca ba3cd85 2a2ba62 4301eca eeb88fb 6499078 eeb88fb 6499078 eeb88fb 8c04f42 eeb88fb 8c04f42 eeb88fb 8c04f42 eeb88fb 2a2ba62 eeb88fb 2a2ba62 eeb88fb 2a2ba62 eeb88fb 4301eca eeb88fb 2a2ba62 eeb88fb 2a2ba62 8c04f42 2a2ba62 eeb88fb 4301eca 2a2ba62 4301eca 44b6d4e 2a2ba62 44b6d4e 4301eca 2a2ba62 4301eca 2a2ba62 4301eca eeb88fb 2a2ba62 eeb88fb 2a2ba62 eeb88fb 2a2ba62 eeb88fb 2a2ba62 4301eca 2a2ba62 4301eca 2a2ba62 4301eca 2a2ba62 4301eca 2a2ba62 4301eca 2a2ba62 4301eca 2a2ba62 eeb88fb 8553d06 4301eca 2a2ba62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import pandas as pd
import json
from typing import Dict, Any, Tuple
import os
# Keep all the constant mappings outside the class
MODEL_NAME_MAP = {
"Claude_3.5_new": "Claude-3.5-Sonnet (1022)",
"GPT_4o": "GPT-4o (0513)",
"Claude_3.5": "Claude-3.5-Sonnet (0620)",
"Gemini_1.5_pro_002": "Gemini-1.5-Pro-002",
"InternVL2_76B": "InternVL2-Llama3-76B",
"Qwen2_VL_72B": "Qwen2-VL-72B",
"llava_onevision_72B": "Llava-OneVision-72B",
"NVLM": "NVLM-D-72B",
"GPT_4o_mini": "GPT-4o mini",
"Gemini_1.5_flash_002": "Gemini-1.5-Flash-002",
"Pixtral_12B": "Pixtral 12B",
"Aria": "Aria-MoE-25B",
"Qwen2_VL_7B": "Qwen2-VL-7B",
"InternVL2_8B": "InternVL2-8B",
"llava_onevision_7B": "Llava-OneVision-7B",
"Llama_3_2_11B": "Llama-3.2-11B",
"Phi-3.5-vision": "Phi-3.5-Vision",
"MiniCPM_v2.6": "MiniCPM-V2.6",
"Idefics3": "Idefics3-8B-Llama3",
"Aquila_VL_2B": "Aquila-VL-2B-llava-qwen",
"POINTS_7B": "POINTS-Qwen2.5-7B",
"Qwen2_VL_2B": "Qwen2-VL-2B",
"InternVL2_2B": "InternVL2-2B",
"Molmo_7B_D": "Molmo-7B-D-0924",
"Molmo_72B": "Molmo-72B-0924",
"Mammoth_VL": "Mammoth-VL-8B",
"SmolVLM": "SmolVLM-1.7B",
"POINTS_15_7B": "POINTS-1.5-8B",
}
DIMENSION_NAME_MAP = {
"skills": "Skills",
"input_format": "Input Format",
"output_format": "Output Format",
"input_num": "Visual Input Number",
"app": "Application"
}
KEYWORD_NAME_MAP = {
# Skills
"Object Recognition and Classification": "Object Recognition",
"Text Recognition (OCR)": "OCR",
"Language Understanding and Generation": "Language",
"Scene and Event Understanding": "Scene/Event",
"Mathematical and Logical Reasoning": "Math/Logic",
"Commonsense and Social Reasoning": "Commonsense",
"Ethical and Safety Reasoning": "Ethics/Safety",
"Domain-Specific Knowledge and Skills": "Domain-Specific",
"Spatial and Temporal Reasoning": "Spatial/Temporal",
"Planning and Decision Making": "Planning/Decision",
# Input Format
'User Interface Screenshots': "UI related",
'Text-Based Images and Documents': "Documents",
'Diagrams and Data Visualizations': "Infographics",
'Videos': "Videos",
'Artistic and Creative Content': "Arts/Creative",
'Photographs': "Photographs",
'3D Models and Aerial Imagery': "3D related",
# Application
'Information_Extraction': "Info Extraction",
'Planning' : "Planning",
'Coding': "Coding",
'Perception': "Perception",
'Metrics': "Metrics",
'Science': "Science",
'Knowledge': "Knowledge",
'Mathematics': "Math",
# Output format
'contextual_formatted_text': "Contexual",
'structured_output': "Structured",
'exact_text': "Exact",
'numerical_data': "Numerical",
'open_ended_output': "Open-ended",
'multiple_choice': "MC",
"6-8 images": "6-8 imgs",
"1-image": "1 img",
"2-3 images": "2-3 imgs",
"4-5 images": "4-5 imgs",
"9-image or more": "9+ imgs",
"video": "Video",
}
MODEL_URLS = {
"Claude_3.5_new": "https://www.anthropic.com/news/3-5-models-and-computer-use",
"GPT_4o": "https://platform.openai.com/docs/models/gpt-4o",
"Claude_3.5": "https://www.anthropic.com/news/claude-3-5-sonnet",
"Gemini_1.5_pro_002": "https://ai.google.dev/gemini-api/docs/models/gemini",
"Gemini_1.5_flash_002": "https://ai.google.dev/gemini-api/docs/models/gemini",
"GPT_4o_mini": "https://platform.openai.com/docs/models#gpt-4o-mini",
"Qwen2_VL_72B": "https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct",
"InternVL2_76B": "https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B",
"llava_onevision_72B": "https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov-chat",
"NVLM": "https://huggingface.co/nvidia/NVLM-D-72B",
"Molmo_72B": "https://huggingface.co/allenai/Molmo-72B-0924",
"Qwen2_VL_7B": "https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct",
"Pixtral_12B": "https://huggingface.co/mistralai/Pixtral-12B-2409",
"Aria": "https://huggingface.co/rhymes-ai/Aria",
"InternVL2_8B": "https://huggingface.co/OpenGVLab/InternVL2-8B",
"Phi-3.5-vision": "https://huggingface.co/microsoft/Phi-3.5-vision-instruct",
"MiniCPM_v2.6": "https://huggingface.co/openbmb/MiniCPM-V-2_6",
"llava_onevision_7B": "https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov",
"Llama_3_2_11B": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision",
"Idefics3": "https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3",
"Molmo_7B_D": "https://huggingface.co/allenai/Molmo-7B-D-0924",
"Aquila_VL_2B": "https://huggingface.co/BAAI/Aquila-VL-2B-llava-qwen",
"POINTS_7B": "https://huggingface.co/WePOINTS/POINTS-Qwen-2-5-7B-Chat",
"Qwen2_VL_2B": "https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct",
"InternVL2_2B": "https://huggingface.co/OpenGVLab/InternVL2-2B",
"POINTS_7B": "https://huggingface.co/WePOINTS/POINTS-Qwen-2-5-7B-Chat",
"POINTS_15_7B": "https://huggingface.co/WePOINTS/POINTS-1-5-Qwen-2-5-7B-Chat",
"SmolVLM": "https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct",
"Mammoth_VL": "https://huggingface.co/MAmmoTH-VL/MAmmoTH-VL-8B",
"InternVL2_5_78B": "https://huggingface.co/OpenGVLab/InternVL2_5-78B",
"InternVL2_5_2B": "https://huggingface.co/OpenGVLab/InternVL2_5-2B",
}
class BaseDataLoader:
# Define the base MODEL_GROUPS structure
BASE_MODEL_GROUPS = {
"All": list(MODEL_NAME_MAP.keys()),
"Flagship Models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002', 'Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM', 'Molmo_72B'],
"Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3', 'Molmo_7B_D', "Aquila_VL_2B", "POINTS_7B", "Qwen2_VL_2B", "InternVL2_2B"],
"Proprietary Flagship models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002'],
"Proprietary Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini'],
"Open-source Flagship Models": ['Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM', "Molmo_72B"],
"Open-source Efficiency Models": ['Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3', 'Molmo_7B_D', "Aquila_VL_2B", "POINTS_7B", "Qwen2_VL_2B", "InternVL2_2B",]
}
def __init__(self):
self.MODEL_DATA = self._load_model_data()
self.SUMMARY_DATA = self._load_summary_data()
self.SUPER_GROUPS = self._initialize_super_groups()
self.MODEL_GROUPS = self._initialize_model_groups()
def _initialize_super_groups(self):
# Get a sample model to access the structure
sample_model = next(iter(self.MODEL_DATA))
# Create groups with task counts
groups = {}
self.keyword_display_map = {} # Add this map to store display-to-original mapping
for dim in self.MODEL_DATA[sample_model]:
dim_name = DIMENSION_NAME_MAP[dim]
# Create a list of tuples (display_name, count, keyword) for sorting
keyword_info = []
for keyword in self.MODEL_DATA[sample_model][dim]:
# Get the task count for this keyword
task_count = self.MODEL_DATA[sample_model][dim][keyword]["count"]
original_name = KEYWORD_NAME_MAP.get(keyword, keyword)
display_name = f"{original_name}({task_count})"
keyword_info.append((display_name, task_count, keyword))
# Sort by count (descending) and then by display name (for ties)
keyword_info.sort(key=lambda x: (-x[1], x[0]))
# Store sorted display names and update mapping
groups[dim_name] = [info[0] for info in keyword_info]
for display_name, _, keyword in keyword_info:
self.keyword_display_map[display_name] = keyword
# Sort based on predefined order
order = ["Application", "Skills", "Output Format", "Input Format", "Visual Input Number"]
return {k: groups[k] for k in order if k in groups}
def _initialize_model_groups(self) -> Dict[str, list]:
# Get the list of available models from the loaded data
available_models = set(self.MODEL_DATA.keys())
# Create filtered groups based on available models
filtered_groups = {}
for group_name, models in self.BASE_MODEL_GROUPS.items():
if group_name == "All":
filtered_groups[group_name] = sorted(list(available_models))
else:
filtered_models = [model for model in models if model in available_models]
if filtered_models: # Only include group if it has models
filtered_groups[group_name] = filtered_models
return filtered_groups
def _load_model_data(self) -> Dict[str, Any]:
raise NotImplementedError("Subclasses must implement _load_model_data")
def _load_summary_data(self) -> Dict[str, Any]:
raise NotImplementedError("Subclasses must implement _load_summary_data")
def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame:
original_dimension = get_original_dimension(selected_super_group)
data = []
for model in self.MODEL_GROUPS[selected_model_group]:
if model not in self.MODEL_DATA or model not in self.SUMMARY_DATA:
continue
model_data = self.MODEL_DATA[model]
summary = self.SUMMARY_DATA[model]
# Basic model information
row = {
"Models": get_display_model_name(model, as_link=True),
"Overall": round(summary["overall_score"] * 100, 2),
"Core": round(summary["core"]["macro_mean_score"] * 100, 2),
"Open-ended": round(summary["open"]["macro_mean_score"] * 100, 2)
}
# Add dimension-specific scores
if original_dimension in model_data:
for display_name in self.SUPER_GROUPS[selected_super_group]:
original_keyword = self.keyword_display_map[display_name]
if original_keyword in model_data[original_dimension]:
row[display_name] = round(model_data[original_dimension][original_keyword]["average_score"] * 100, 2)
else:
row[display_name] = None
else:
for display_name in self.SUPER_GROUPS[selected_super_group]:
row[display_name] = None
data.append(row)
df = pd.DataFrame(data)
df = df.sort_values(by="Overall", ascending=False)
return df
def get_leaderboard_data(self, selected_super_group: str, selected_model_group: str) -> Tuple[list, list]:
df = self.get_df(selected_super_group, selected_model_group)
# Get total task counts from the first model's data
sample_model = next(iter(self.SUMMARY_DATA))
total_core_tasks = self.SUMMARY_DATA[sample_model]["core"]["num_eval_tasks"]
total_open_tasks = self.SUMMARY_DATA[sample_model]["open"]["num_eval_tasks"]
total_tasks = total_core_tasks + total_open_tasks
# Define headers with task counts
column_headers = {
"Models": "Models",
"Overall": f"Overall({total_tasks})",
"Core": f"Core({total_core_tasks})",
"Open-ended": f"Open-ended({total_open_tasks})"
}
# Rename the columns in DataFrame to match headers
df = df.rename(columns=column_headers)
headers = [
column_headers["Models"],
column_headers["Overall"],
column_headers["Core"],
column_headers["Open-ended"]
] + self.SUPER_GROUPS[selected_super_group]
data = df[[
column_headers["Models"],
column_headers["Overall"],
column_headers["Core"],
column_headers["Open-ended"]
] + self.SUPER_GROUPS[selected_super_group]].values.tolist()
return headers, data
class DefaultDataLoader(BaseDataLoader):
def __init__(self):
super().__init__()
def _load_model_data(self) -> Dict[str, Any]:
model_data = {}
base_path = "./static/eval_results/Default"
try:
model_folders = [f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f))]
for model_name in model_folders:
model_path = f"{base_path}/{model_name}/summary_results.json"
with open(model_path, "r") as f:
data = json.load(f)
if "keyword_stats" in data:
model_data[model_name] = data["keyword_stats"]
except FileNotFoundError:
pass
return model_data
def _load_summary_data(self) -> Dict[str, Any]:
summary_data = {}
base_path = "./static/eval_results/Default"
try:
model_folders = [f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f))]
for model_name in model_folders:
model_path = f"{base_path}/{model_name}/summary_results.json"
with open(model_path, "r") as f:
data = json.load(f)
if "model_summary" in data:
summary_data[model_name] = data["model_summary"]
except FileNotFoundError:
pass
return summary_data
class SingleImageDataLoader(BaseDataLoader):
def __init__(self):
super().__init__()
def _load_model_data(self) -> Dict[str, Any]:
model_data = {}
base_path = "./static/eval_results/SI"
try:
model_folders = [f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f))]
for model_name in model_folders:
model_path = f"{base_path}/{model_name}/summary_results.json"
with open(model_path, "r") as f:
data = json.load(f)
if "keyword_stats" in data:
model_data[model_name] = data["keyword_stats"]
except FileNotFoundError:
pass
return model_data
def _load_summary_data(self) -> Dict[str, Any]:
summary_data = {}
base_path = "./static/eval_results/SI"
try:
model_folders = [f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f))]
for model_name in model_folders:
model_path = f"{base_path}/{model_name}/summary_results.json"
with open(model_path, "r") as f:
data = json.load(f)
if "model_summary" in data:
summary_data[model_name] = data["model_summary"]
except FileNotFoundError:
pass
return summary_data
# Keep your helper functions
def get_original_dimension(mapped_dimension):
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)
def get_original_keyword(mapped_keyword):
return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword)
def get_display_model_name(model_name: str, as_link: bool = True) -> str:
display_name = MODEL_NAME_MAP.get(model_name, model_name)
if as_link and model_name in MODEL_URLS:
return f'<a href="{MODEL_URLS[model_name]}" target="_blank" style="text-decoration: none; color: #2196F3;">{display_name}</a>'
return display_name
|