File size: 11,827 Bytes
8553d06
 
eeb88fb
8553d06
eeb88fb
8553d06
f14a657
8553d06
f14a657
8553d06
 
 
 
f14a657
8553d06
 
 
f14a657
8553d06
 
 
 
 
 
 
eeb88fb
 
 
 
 
 
8553d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb88fb
 
 
 
6499078
 
eeb88fb
 
6499078
 
eeb88fb
 
 
 
 
 
 
 
 
8c04f42
 
eeb88fb
8c04f42
 
 
eeb88fb
8c04f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb88fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8553d06
eeb88fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c04f42
 
eeb88fb
8c04f42
eeb88fb
8c04f42
eeb88fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c04f42
 
eeb88fb
8c04f42
eeb88fb
8c04f42
eeb88fb
 
 
 
 
 
 
 
 
 
 
 
 
 
8553d06
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import pandas as pd
import json
from typing import Dict, Any, Tuple

# Keep all the constant mappings outside the class
MODEL_NAME_MAP = {
    "Claude_3.5_new": "Claude-3.5-Sonnet (1022)",
    "GPT_4o": "GPT-4o (0513)",
    "Claude_3.5": "Claude-3.5-Sonnet (0622)",
    "Gemini_1.5_pro_002": "Gemini-1.5-Pro-002",
    "InternVL2_76B": "InternVL2-Llama3-76B",
    "Qwen2_VL_72B": "Qwen2-VL-72B",
    "llava_onevision_72B": "Llava-OneVision-72B",
    "NVLM": "NVLM-72B",
    "GPT_4o_mini": "GPT-4o mini",
    "Gemini_1.5_flash_002": "Gemini-1.5-Flash-002",
    "Pixtral_12B": "Pixtral 12B",
    "Aria": "Aria-MoE-25B",
    "Qwen2_VL_7B": "Qwen2-VL-7B",
    "InternVL2_8B": "InternVL2-8B",
    "llava_onevision_7B": "Llava-OneVision-7B",
    "Llama_3_2_11B": "Llama-3.2-11B",
    "Phi-3.5-vision": "Phi-3.5-Vision",
    "MiniCPM_v2.6": "MiniCPM-V2.6",
    "Idefics3": "Idefics3-8B-Llama3",
    "Aquila_VL_2B": "Aquila-VL-2B-llava-qwen",
    "POINTS_7B": "POINTS-Qwen2.5-7B",
    "Qwen2_VL_2B": "Qwen2-VL-2B",
    "InternVL2_2B": "InternVL2-2B",
    "Molmo_7B_D": "Molmo-7B-D-0924",
    "Molmo_72B": "Molmo-72B-0924",
}

DIMENSION_NAME_MAP = {
    "skills": "Skills",
    "input_format": "Input Format",
    "output_format": "Output Format",
    "input_num": "Visual Input Number",
    "app": "Application"
}

KEYWORD_NAME_MAP = {
    # Skills
    "Object Recognition and Classification": "Object Recognition",
    "Text Recognition (OCR)": "OCR",
    "Language Understanding and Generation": "Language",
    "Scene and Event Understanding": "Scene/Event",
    "Mathematical and Logical Reasoning": "Math/Logic",
    "Commonsense and Social Reasoning": "Commonsense",
    "Ethical and Safety Reasoning": "Ethics/Safety",
    "Domain-Specific Knowledge and Skills": "Domain-Specific",
    "Spatial and Temporal Reasoning": "Spatial/Temporal",
    "Planning and Decision Making": "Planning/Decision",
    # Input Format
    'User Interface Screenshots': "UI related", 
    'Text-Based Images and Documents': "Documents", 
    'Diagrams and Data Visualizations': "Infographics", 
    'Videos': "Videos", 
    'Artistic and Creative Content': "Arts/Creative", 
    'Photographs': "Photographs", 
    '3D Models and Aerial Imagery': "3D related",
    # Application
    'Information_Extraction': "Info Extraction", 
    'Planning' : "Planning", 
    'Coding': "Coding", 
    'Perception': "Perception", 
    'Metrics': "Metrics", 
    'Science': "Science", 
    'Knowledge': "Knowledge", 
    'Mathematics': "Math",
    # Output format
    'contextual_formatted_text': "Contexual", 
    'structured_output': "Structured", 
    'exact_text': "Exact", 
    'numerical_data': "Numerical", 
    'open_ended_output': "Open-ended", 
    'multiple_choice': "MC",
    "6-8 images": "6-8 imgs",
    "1-image": "1 img",
    "2-3 images": "2-3 imgs",
    "4-5 images": "4-5 imgs",
    "9-image or more": "9+ imgs",
    "video": "Video",
}

class BaseDataLoader:
    # Define the base MODEL_GROUPS structure
    BASE_MODEL_GROUPS = {
        "All": list(MODEL_NAME_MAP.keys()),
        "Flagship Models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002', 'Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM', 'Molmo_72B'],
        "Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3', 'Molmo_7B_D', "Aquila_VL_2B", "POINTS_7B", "Qwen2_VL_2B", "InternVL2_2B"],
        "Proprietary Flagship models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002'],
        "Proprietary Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini'],
        "Open-source Flagship Models": ['Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM', "Molmo_72B"],
        "Open-source Efficiency Models": ['Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3', 'Molmo_7B_D', "Aquila_VL_2B", "POINTS_7B", "Qwen2_VL_2B", "InternVL2_2B",]
    }

    def __init__(self):
        self.MODEL_DATA = self._load_model_data()
        self.SUMMARY_DATA = self._load_summary_data()
        self.SUPER_GROUPS = self._initialize_super_groups()
        self.MODEL_GROUPS = self._initialize_model_groups()

    def _initialize_super_groups(self):
        # Get a sample model to access the structure
        sample_model = next(iter(self.MODEL_DATA))
        
        # Create groups with task counts
        groups = {}
        self.keyword_display_map = {}  # Add this map to store display-to-original mapping
        
        for dim in self.MODEL_DATA[sample_model]:
            dim_name = DIMENSION_NAME_MAP[dim]
            # Create a list of tuples (display_name, count, keyword) for sorting
            keyword_info = []
            
            for keyword in self.MODEL_DATA[sample_model][dim]:
                # Get the task count for this keyword
                task_count = self.MODEL_DATA[sample_model][dim][keyword]["count"]
                original_name = KEYWORD_NAME_MAP.get(keyword, keyword)
                display_name = f"{original_name}({task_count})"
                keyword_info.append((display_name, task_count, keyword))
            
            # Sort by count (descending) and then by display name (for ties)
            keyword_info.sort(key=lambda x: (-x[1], x[0]))
            
            # Store sorted display names and update mapping
            groups[dim_name] = [info[0] for info in keyword_info]
            for display_name, _, keyword in keyword_info:
                self.keyword_display_map[display_name] = keyword
        
        # Sort based on predefined order
        order = ["Application", "Skills", "Output Format", "Input Format", "Visual Input Number"]
        return {k: groups[k] for k in order if k in groups}

    def _initialize_model_groups(self) -> Dict[str, list]:
        # Get the list of available models from the loaded data
        available_models = set(self.MODEL_DATA.keys())
        
        # Create filtered groups based on available models
        filtered_groups = {}
        for group_name, models in self.BASE_MODEL_GROUPS.items():
            if group_name == "All":
                filtered_groups[group_name] = sorted(list(available_models))
            else:
                filtered_models = [model for model in models if model in available_models]
                if filtered_models:  # Only include group if it has models
                    filtered_groups[group_name] = filtered_models
        
        return filtered_groups

    def _load_model_data(self) -> Dict[str, Any]:
        raise NotImplementedError("Subclasses must implement _load_model_data")

    def _load_summary_data(self) -> Dict[str, Any]:
        raise NotImplementedError("Subclasses must implement _load_summary_data")

    def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame:
        raise NotImplementedError("Subclasses must implement get_df")

    def get_leaderboard_data(self, selected_super_group: str, selected_model_group: str) -> Tuple[list, list]:
        raise NotImplementedError("Subclasses must implement get_leaderboard_data")


class DefaultDataLoader(BaseDataLoader):
    def __init__(self):
        super().__init__()

    def _load_model_data(self) -> Dict[str, Any]:
        with open("./static/eval_results/Default/all_model_keywords_stats.json", "r") as f:
            return json.load(f)

    def _load_summary_data(self) -> Dict[str, Any]:
        with open("./static/eval_results/Default/all_summary.json", "r") as f:
            return json.load(f)

    def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame:
        original_dimension = get_original_dimension(selected_super_group)
        data = []
        for model in self.MODEL_GROUPS[selected_model_group]:
            model_data = self.MODEL_DATA[model]
            summary = self.SUMMARY_DATA[model]
            core_noncot_score = summary["core_noncot"]["macro_mean_score"]
            core_cot_score = summary["core_cot"]["macro_mean_score"]
            row = {
                "Models": get_display_model_name(model),
                "Overall": round(summary["overall_score"] * 100, 2),
                "Core(w/o CoT)": round(core_noncot_score * 100, 2),
                "Core(w/ CoT)": round(core_cot_score * 100, 2),
                "Open-ended": round(summary["open"]["macro_mean_score"] * 100, 2)
            }
            for display_name in self.SUPER_GROUPS[selected_super_group]:
                original_keyword = self.keyword_display_map[display_name]
                if original_dimension in model_data and original_keyword in model_data[original_dimension]:
                    row[display_name] = round(model_data[original_dimension][original_keyword]["average_score"] * 100, 2)
                else:
                    row[display_name] = None
            data.append(row)
        
        df = pd.DataFrame(data)
        df = df.sort_values(by="Overall", ascending=False)
        return df

    def get_leaderboard_data(self, selected_super_group: str, selected_model_group: str) -> Tuple[list, list]:
        df = self.get_df(selected_super_group, selected_model_group)
        headers = ["Models", "Overall", "Core(w/o CoT)", "Core(w/ CoT)", "Open-ended"] + self.SUPER_GROUPS[selected_super_group]
        data = df[headers].values.tolist()
        return headers, data


class CoreSingleDataLoader(BaseDataLoader):
    def __init__(self):
        super().__init__()

    def _load_model_data(self) -> Dict[str, Any]:
        with open("./static/eval_results/Core_SI/all_model_keywords_stats.json", "r") as f:
            return json.load(f)

    def _load_summary_data(self) -> Dict[str, Any]:
        with open("./static/eval_results/Core_SI/all_summary.json", "r") as f:
            return json.load(f)

    def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame:
        original_dimension = get_original_dimension(selected_super_group)
        data = []
        for model in self.MODEL_GROUPS[selected_model_group]:
            model_data = self.MODEL_DATA[model]
            summary = self.SUMMARY_DATA[model]
            core_si_score = summary["macro_mean_score"]
            row = {
                "Models": get_display_model_name(model),
                "Core SI": round(core_si_score * 100, 2),
            }
            for display_name in self.SUPER_GROUPS[selected_super_group]:
                original_keyword = self.keyword_display_map[display_name]
                if original_dimension in model_data and original_keyword in model_data[original_dimension]:
                    row[display_name] = round(model_data[original_dimension][original_keyword]["average_score"] * 100, 2)
                else:
                    row[display_name] = None
            data.append(row)
        
        df = pd.DataFrame(data)
        df = df.sort_values(by="Core SI", ascending=False)
        return df

    def get_leaderboard_data(self, selected_super_group: str, selected_model_group: str) -> Tuple[list, list]:
        df = self.get_df(selected_super_group, selected_model_group)
        headers = ["Models", "Core SI"] + self.SUPER_GROUPS[selected_super_group]
        data = df[headers].values.tolist()
        return headers, data


# Keep your helper functions
def get_original_dimension(mapped_dimension):
    return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)

def get_original_keyword(mapped_keyword):
    return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword)

def get_display_model_name(model_name):
    return MODEL_NAME_MAP.get(model_name, model_name)