Spaces:
Running
Running
import pandas as pd | |
import json | |
from typing import Dict, Any, Tuple | |
import os | |
from constants import ( | |
MODEL_NAME_MAP, | |
DIMENSION_NAME_MAP, | |
KEYWORD_NAME_MAP, | |
MODEL_URLS, | |
BASE_MODEL_GROUPS | |
) | |
class MEGABenchEvalDataLoader: | |
def __init__(self, base_path): | |
self.base_path = base_path | |
# Load both model and summary data at once | |
self.KEYWORD_DATA, self.SUMMARY_DATA = self._load_data() | |
self.SUPER_GROUPS = self._initialize_super_groups() | |
self.MODEL_GROUPS = self._initialize_model_groups() | |
def _get_base_path(self) -> str: | |
raise NotImplementedError("Subclasses must implement _get_base_path") | |
def _load_data(self) -> Tuple[Dict[str, Any], Dict[str, Any]]: | |
summary_data = {} | |
keyword_data = {} | |
model_folders = [f for f in os.listdir(self.base_path) if os.path.isdir(os.path.join(self.base_path, f))] | |
for model_name in model_folders: | |
model_path = f"{self.base_path}/{model_name}/summary_and_keyword_stats.json" | |
with open(model_path, "r") as f: | |
data = json.load(f) | |
if "keyword_stats" in data: | |
keyword_data[model_name] = data["keyword_stats"] | |
if "model_summary" in data: | |
summary_data[model_name] = data["model_summary"] | |
return keyword_data, summary_data | |
def _initialize_super_groups(self): | |
# Get a sample model to access the structure | |
sample_model = next(iter(self.KEYWORD_DATA)) | |
# Create groups with task counts | |
groups = {} | |
self.keyword_display_map = {} # Add this map to store display-to-original mapping | |
for dim in self.KEYWORD_DATA[sample_model]: | |
dim_name = DIMENSION_NAME_MAP[dim] | |
# Create a list of tuples (display_name, count, keyword) for sorting | |
keyword_info = [] | |
for keyword in self.KEYWORD_DATA[sample_model][dim]: | |
# Get the task count for this keyword | |
task_count = self.KEYWORD_DATA[sample_model][dim][keyword]["count"] | |
original_name = KEYWORD_NAME_MAP.get(keyword, keyword) | |
display_name = f"{original_name}({task_count})" | |
keyword_info.append((display_name, task_count, keyword)) | |
# Sort by count (descending) and then by display name (for ties) | |
keyword_info.sort(key=lambda x: (-x[1], x[0])) | |
# Store sorted display names and update mapping | |
groups[dim_name] = [info[0] for info in keyword_info] | |
for display_name, _, keyword in keyword_info: | |
self.keyword_display_map[display_name] = keyword | |
# Sort based on predefined order | |
order = ["Application", "Skills", "Output Format", "Input Format", "Visual Input Number"] | |
return {k: groups[k] for k in order if k in groups} | |
def _initialize_model_groups(self) -> Dict[str, list]: | |
available_models = set(self.KEYWORD_DATA.keys()) | |
filtered_groups = {} | |
for group_name, models in BASE_MODEL_GROUPS.items(): | |
if group_name == "All": | |
filtered_groups[group_name] = sorted(list(available_models)) | |
else: | |
filtered_models = [model for model in models if model in available_models] | |
if filtered_models: | |
filtered_groups[group_name] = filtered_models | |
return filtered_groups | |
def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame: | |
original_dimension = get_original_dimension(selected_super_group) | |
data = [] | |
for model in self.MODEL_GROUPS[selected_model_group]: | |
if model not in self.KEYWORD_DATA or model not in self.SUMMARY_DATA: | |
continue | |
model_data = self.KEYWORD_DATA[model] | |
summary = self.SUMMARY_DATA[model] | |
# Basic model information | |
row = { | |
"Models": get_display_model_name(model, as_link=True), | |
"Overall": round(summary["overall_score"] * 100, 2), | |
"Core": round(summary["core"]["macro_mean_score"] * 100, 2), | |
"Open-ended": round(summary["open"]["macro_mean_score"] * 100, 2) | |
} | |
# Add dimension-specific scores | |
if original_dimension in model_data: | |
for display_name in self.SUPER_GROUPS[selected_super_group]: | |
original_keyword = self.keyword_display_map[display_name] | |
if original_keyword in model_data[original_dimension]: | |
row[display_name] = round(model_data[original_dimension][original_keyword]["average_score"] * 100, 2) | |
else: | |
row[display_name] = None | |
else: | |
for display_name in self.SUPER_GROUPS[selected_super_group]: | |
row[display_name] = None | |
data.append(row) | |
df = pd.DataFrame(data) | |
df = df.sort_values(by="Overall", ascending=False) | |
return df | |
def get_leaderboard_data(self, selected_super_group: str, selected_model_group: str) -> Tuple[list, list]: | |
df = self.get_df(selected_super_group, selected_model_group) | |
# Get total task counts from the first model's data | |
sample_model = "GPT_4o" | |
total_core_tasks = self.SUMMARY_DATA[sample_model]["core"]["num_eval_tasks"] | |
total_open_tasks = self.SUMMARY_DATA[sample_model]["open"]["num_eval_tasks"] | |
total_tasks = total_core_tasks + total_open_tasks | |
# Define headers with task counts | |
column_headers = { | |
"Models": "Models", | |
"Overall": f"Overall({total_tasks})", | |
"Core": f"Core({total_core_tasks})", | |
"Open-ended": f"Open-ended({total_open_tasks})" | |
} | |
# Rename the columns in DataFrame to match headers | |
df = df.rename(columns=column_headers) | |
headers = [ | |
column_headers["Models"], | |
column_headers["Overall"], | |
column_headers["Core"], | |
column_headers["Open-ended"] | |
] + self.SUPER_GROUPS[selected_super_group] | |
data = df[[ | |
column_headers["Models"], | |
column_headers["Overall"], | |
column_headers["Core"], | |
column_headers["Open-ended"] | |
] + self.SUPER_GROUPS[selected_super_group]].values.tolist() | |
return headers, data | |
# Keep your helper functions | |
def get_original_dimension(mapped_dimension): | |
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension) | |
def get_original_keyword(mapped_keyword): | |
return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword) | |
def get_display_model_name(model_name: str, as_link: bool = True) -> str: | |
display_name = MODEL_NAME_MAP.get(model_name, model_name) | |
if as_link and model_name in MODEL_URLS: | |
return f'<a href="{MODEL_URLS[model_name]}" target="_blank" style="text-decoration: none; color: #2196F3;">{display_name}</a>' | |
return display_name | |