MEGA-Bench / utils.py
cccjc's picture
dump from mock space
8553d06
raw
history blame
6.15 kB
import pandas as pd
import gradio as gr
import csv
import json
import os
import shutil
from huggingface_hub import Repository
import numpy as np
# Load the JSON data
with open("./static/eval_results/all_model_keywords_stats.json", "r") as f:
MODEL_DATA = json.load(f)
with open("./static/eval_results/all_summary.json", "r") as f:
SUMMARY_DATA = json.load(f)
# Define model name mapping
MODEL_NAME_MAP = {
"GPT_4o": "GPT-4o (0513)",
"Claude_3.5": "Claude-3.5-Sonnet",
"Gemini_1.5_pro_002": "Gemini-1.5-Pro-002",
"InternVL2_76B": "InternVL2-Llama3-76B",
"Qwen2_VL_72B": "Qwen2-VL-72B",
"llava_onevision_72B": "Llava-OneVision-72B",
"GPT_4o_mini": "GPT-4o mini",
"Gemini_1.5_flash_002": "Gemini-1.5-Flash-002",
"Pixtral_12B": "Pixtral 12B",
"Qwen2_VL_7B": "Qwen2-VL-7B",
"InternVL2_8B": "InternVL2-8B",
"llava_onevision_7B": "Llava-OneVision-7B",
"Llama_3_2_11B": "Llama-3.2-11B",
"Phi-3.5-vision": "Phi-3.5-Vision",
"MiniCPM_v2.6": "MiniCPM-V2.6",
"Idefics3": "Idefics3-8B-Llama3",
}
# Custom name mapping for dimensions and keywords
DIMENSION_NAME_MAP = {
"skills": "Skills",
"input_format": "Input Format",
"output_format": "Output Format",
"input_num": "Visual Input Number",
"app": "Application"
}
KEYWORD_NAME_MAP = {
# Skills
"Object Recognition and Classification": "Object Recognition",
"Text Recognition (OCR)": "OCR",
"Language Understanding and Generation": "Language",
"Scene and Event Understanding": "Scene/Event",
"Mathematical and Logical Reasoning": "Math/Logic",
"Commonsense and Social Reasoning": "Commonsense",
"Ethical and Safety Reasoning": "Ethics/Safety",
"Domain-Specific Knowledge and Skills": "Domain-Specific",
"Spatial and Temporal Reasoning": "Spatial/Temporal",
"Planning and Decision Making": "Planning/Decision",
# Input Format
'User Interface Screenshots': "UI related",
'Text-Based Images and Documents': "Documents",
'Diagrams and Data Visualizations': "Infographics",
'Videos': "Videos",
'Artistic and Creative Content': "Arts/Creative",
'Photographs': "Photographs",
'3D Models and Aerial Imagery': "3D related",
# Application
'Information_Extraction': "Info Extraction",
'Planning' : "Planning",
'Coding': "Coding",
'Perception': "Perception",
'Metrics': "Metrics",
'Science': "Science",
'Knowledge': "Knowledge",
'Mathematics': "Math",
# Output format
'contextual_formatted_text': "Contexual",
'structured_output': "Structured",
'exact_text': "Exact",
'numerical_data': "Numerical",
'open_ended_output': "Open-ended",
'multiple_choice': "MC",
"6-8 images": "6-8 imgs",
"1-image": "1 img",
"2-3 images": "2-3 imgs",
"4-5 images": "4-5 imgs",
"9-image or more": "9+ imgs",
"video": "Video",
}
# Extract super groups (dimensions) and their keywords
SUPER_GROUPS = {DIMENSION_NAME_MAP[dim]: [KEYWORD_NAME_MAP.get(k, k) for k in MODEL_DATA[next(iter(MODEL_DATA))][dim].keys()]
for dim in MODEL_DATA[next(iter(MODEL_DATA))]}
SUBMISSION_NAME = "test_leaderboard_submission"
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/cccjc/", SUBMISSION_NAME)
CSV_DIR = "./test_leaderboard_submission/results.csv"
def get_original_dimension(mapped_dimension):
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)
def get_original_keyword(mapped_keyword):
return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword)
# Define model groups
MODEL_GROUPS = {
"All": list(MODEL_DATA.keys()),
"Flagship Models": ['GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002', 'Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B'],
"Efficienty Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'],
"Proprietary Flagship models": ['GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002'],
"Open-source Efficienty Models": ['Qwen2_VL_7B', 'Pixtral_12B', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'],
"Open-source Flagship Models": ['Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B'],
"Proprietary Efficienty Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'],
}
def get_display_model_name(model_name):
return MODEL_NAME_MAP.get(model_name, model_name)
def get_df(selected_super_group, selected_model_group):
original_dimension = get_original_dimension(selected_super_group)
data = []
for model in MODEL_GROUPS[selected_model_group]:
model_data = MODEL_DATA[model]
summary = SUMMARY_DATA[model]
core_score = max(summary["core_noncot"]["macro_mean_score"], summary["core_cot"]["macro_mean_score"])
row = {
"Models": get_display_model_name(model), # Use the mapped name
"Overall": round(summary["overall_score"] * 100, 2),
"Core": round(core_score * 100, 2),
"Open-ended": round(summary["open"]["macro_mean_score"] * 100, 2)
}
for keyword in SUPER_GROUPS[selected_super_group]:
original_keyword = get_original_keyword(keyword)
if original_dimension in model_data and original_keyword in model_data[original_dimension]:
row[keyword] = round(model_data[original_dimension][original_keyword]["average_score"] * 100, 2)
else:
row[keyword] = None
data.append(row)
df = pd.DataFrame(data)
df = df.sort_values(by="Overall", ascending=False)
return df
def get_leaderboard_data(selected_super_group, selected_model_group):
df = get_df(selected_super_group, selected_model_group)
headers = ["Models", "Overall", "Core", "Open-ended"] + SUPER_GROUPS[selected_super_group]
data = df[headers].values.tolist()
return headers, data