Spaces:
Running
Running
import pandas as pd | |
import gradio as gr | |
import csv | |
import json | |
import os | |
import shutil | |
from huggingface_hub import Repository | |
import numpy as np | |
# Load the JSON data | |
with open("./static/eval_results/all_model_keywords_stats.json", "r") as f: | |
MODEL_DATA = json.load(f) | |
with open("./static/eval_results/all_summary.json", "r") as f: | |
SUMMARY_DATA = json.load(f) | |
# Define model name mapping | |
MODEL_NAME_MAP = { | |
"GPT_4o": "GPT-4o (0513)", | |
"Claude_3.5": "Claude-3.5-Sonnet", | |
"Gemini_1.5_pro_002": "Gemini-1.5-Pro-002", | |
"InternVL2_76B": "InternVL2-Llama3-76B", | |
"Qwen2_VL_72B": "Qwen2-VL-72B", | |
"llava_onevision_72B": "Llava-OneVision-72B", | |
"GPT_4o_mini": "GPT-4o mini", | |
"Gemini_1.5_flash_002": "Gemini-1.5-Flash-002", | |
"Pixtral_12B": "Pixtral 12B", | |
"Qwen2_VL_7B": "Qwen2-VL-7B", | |
"InternVL2_8B": "InternVL2-8B", | |
"llava_onevision_7B": "Llava-OneVision-7B", | |
"Llama_3_2_11B": "Llama-3.2-11B", | |
"Phi-3.5-vision": "Phi-3.5-Vision", | |
"MiniCPM_v2.6": "MiniCPM-V2.6", | |
"Idefics3": "Idefics3-8B-Llama3", | |
} | |
# Custom name mapping for dimensions and keywords | |
DIMENSION_NAME_MAP = { | |
"skills": "Skills", | |
"input_format": "Input Format", | |
"output_format": "Output Format", | |
"input_num": "Visual Input Number", | |
"app": "Application" | |
} | |
KEYWORD_NAME_MAP = { | |
# Skills | |
"Object Recognition and Classification": "Object Recognition", | |
"Text Recognition (OCR)": "OCR", | |
"Language Understanding and Generation": "Language", | |
"Scene and Event Understanding": "Scene/Event", | |
"Mathematical and Logical Reasoning": "Math/Logic", | |
"Commonsense and Social Reasoning": "Commonsense", | |
"Ethical and Safety Reasoning": "Ethics/Safety", | |
"Domain-Specific Knowledge and Skills": "Domain-Specific", | |
"Spatial and Temporal Reasoning": "Spatial/Temporal", | |
"Planning and Decision Making": "Planning/Decision", | |
# Input Format | |
'User Interface Screenshots': "UI related", | |
'Text-Based Images and Documents': "Documents", | |
'Diagrams and Data Visualizations': "Infographics", | |
'Videos': "Videos", | |
'Artistic and Creative Content': "Arts/Creative", | |
'Photographs': "Photographs", | |
'3D Models and Aerial Imagery': "3D related", | |
# Application | |
'Information_Extraction': "Info Extraction", | |
'Planning' : "Planning", | |
'Coding': "Coding", | |
'Perception': "Perception", | |
'Metrics': "Metrics", | |
'Science': "Science", | |
'Knowledge': "Knowledge", | |
'Mathematics': "Math", | |
# Output format | |
'contextual_formatted_text': "Contexual", | |
'structured_output': "Structured", | |
'exact_text': "Exact", | |
'numerical_data': "Numerical", | |
'open_ended_output': "Open-ended", | |
'multiple_choice': "MC", | |
"6-8 images": "6-8 imgs", | |
"1-image": "1 img", | |
"2-3 images": "2-3 imgs", | |
"4-5 images": "4-5 imgs", | |
"9-image or more": "9+ imgs", | |
"video": "Video", | |
} | |
# Extract super groups (dimensions) and their keywords | |
SUPER_GROUPS = {DIMENSION_NAME_MAP[dim]: [KEYWORD_NAME_MAP.get(k, k) for k in MODEL_DATA[next(iter(MODEL_DATA))][dim].keys()] | |
for dim in MODEL_DATA[next(iter(MODEL_DATA))]} | |
SUBMISSION_NAME = "test_leaderboard_submission" | |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/cccjc/", SUBMISSION_NAME) | |
CSV_DIR = "./test_leaderboard_submission/results.csv" | |
def get_original_dimension(mapped_dimension): | |
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension) | |
def get_original_keyword(mapped_keyword): | |
return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword) | |
# Define model groups | |
MODEL_GROUPS = { | |
"All": list(MODEL_DATA.keys()), | |
"Flagship Models": ['GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002', 'Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B'], | |
"Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'], | |
"Proprietary Flagship models": ['GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002'], | |
"Open-source Efficiency Models": ['Qwen2_VL_7B', 'Pixtral_12B', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'], | |
"Open-source Flagship Models": ['Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B'], | |
"Proprietary Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'], | |
} | |
def get_display_model_name(model_name): | |
return MODEL_NAME_MAP.get(model_name, model_name) | |
def get_df(selected_super_group, selected_model_group): | |
original_dimension = get_original_dimension(selected_super_group) | |
data = [] | |
for model in MODEL_GROUPS[selected_model_group]: | |
model_data = MODEL_DATA[model] | |
summary = SUMMARY_DATA[model] | |
core_score = max(summary["core_noncot"]["macro_mean_score"], summary["core_cot"]["macro_mean_score"]) | |
row = { | |
"Models": get_display_model_name(model), # Use the mapped name | |
"Overall": round(summary["overall_score"] * 100, 2), | |
"Core": round(core_score * 100, 2), | |
"Open-ended": round(summary["open"]["macro_mean_score"] * 100, 2) | |
} | |
for keyword in SUPER_GROUPS[selected_super_group]: | |
original_keyword = get_original_keyword(keyword) | |
if original_dimension in model_data and original_keyword in model_data[original_dimension]: | |
row[keyword] = round(model_data[original_dimension][original_keyword]["average_score"] * 100, 2) | |
else: | |
row[keyword] = None | |
data.append(row) | |
df = pd.DataFrame(data) | |
df = df.sort_values(by="Overall", ascending=False) | |
return df | |
def get_leaderboard_data(selected_super_group, selected_model_group): | |
df = get_df(selected_super_group, selected_model_group) | |
headers = ["Models", "Overall", "Core", "Open-ended"] + SUPER_GROUPS[selected_super_group] | |
data = df[headers].values.tolist() | |
return headers, data | |