import pandas as pd import gradio as gr import csv import json import os import shutil from huggingface_hub import Repository import numpy as np # Load the JSON data with open("./static/eval_results/all_model_keywords_stats.json", "r") as f: MODEL_DATA = json.load(f) with open("./static/eval_results/all_summary.json", "r") as f: SUMMARY_DATA = json.load(f) # Define model name mapping MODEL_NAME_MAP = { "Claude_3.5_new": "Claude-3.5-Sonnet (1022)", "GPT_4o": "GPT-4o (0513)", "Claude_3.5": "Claude-3.5-Sonnet (0622)", "Gemini_1.5_pro_002": "Gemini-1.5-Pro-002", "InternVL2_76B": "InternVL2-Llama3-76B", "Qwen2_VL_72B": "Qwen2-VL-72B", "llava_onevision_72B": "Llava-OneVision-72B", "NVLM": "NVLM-72B", "GPT_4o_mini": "GPT-4o mini", "Gemini_1.5_flash_002": "Gemini-1.5-Flash-002", "Pixtral_12B": "Pixtral 12B", "Aria": "Aria-MoE-25B", "Qwen2_VL_7B": "Qwen2-VL-7B", "InternVL2_8B": "InternVL2-8B", "llava_onevision_7B": "Llava-OneVision-7B", "Llama_3_2_11B": "Llama-3.2-11B", "Phi-3.5-vision": "Phi-3.5-Vision", "MiniCPM_v2.6": "MiniCPM-V2.6", "Idefics3": "Idefics3-8B-Llama3", } # Custom name mapping for dimensions and keywords DIMENSION_NAME_MAP = { "skills": "Skills", "input_format": "Input Format", "output_format": "Output Format", "input_num": "Visual Input Number", "app": "Application" } KEYWORD_NAME_MAP = { # Skills "Object Recognition and Classification": "Object Recognition", "Text Recognition (OCR)": "OCR", "Language Understanding and Generation": "Language", "Scene and Event Understanding": "Scene/Event", "Mathematical and Logical Reasoning": "Math/Logic", "Commonsense and Social Reasoning": "Commonsense", "Ethical and Safety Reasoning": "Ethics/Safety", "Domain-Specific Knowledge and Skills": "Domain-Specific", "Spatial and Temporal Reasoning": "Spatial/Temporal", "Planning and Decision Making": "Planning/Decision", # Input Format 'User Interface Screenshots': "UI related", 'Text-Based Images and Documents': "Documents", 'Diagrams and Data Visualizations': "Infographics", 'Videos': "Videos", 'Artistic and Creative Content': "Arts/Creative", 'Photographs': "Photographs", '3D Models and Aerial Imagery': "3D related", # Application 'Information_Extraction': "Info Extraction", 'Planning' : "Planning", 'Coding': "Coding", 'Perception': "Perception", 'Metrics': "Metrics", 'Science': "Science", 'Knowledge': "Knowledge", 'Mathematics': "Math", # Output format 'contextual_formatted_text': "Contexual", 'structured_output': "Structured", 'exact_text': "Exact", 'numerical_data': "Numerical", 'open_ended_output': "Open-ended", 'multiple_choice': "MC", "6-8 images": "6-8 imgs", "1-image": "1 img", "2-3 images": "2-3 imgs", "4-5 images": "4-5 imgs", "9-image or more": "9+ imgs", "video": "Video", } # Extract super groups (dimensions) and their keywords SUPER_GROUPS = {DIMENSION_NAME_MAP[dim]: [KEYWORD_NAME_MAP.get(k, k) for k in MODEL_DATA[next(iter(MODEL_DATA))][dim].keys()] for dim in MODEL_DATA[next(iter(MODEL_DATA))]} def get_original_dimension(mapped_dimension): return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension) def get_original_keyword(mapped_keyword): return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword) # Define model groups MODEL_GROUPS = { "All": list(MODEL_DATA.keys()), "Flagship Models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002', 'Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM'], "Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'], "Proprietary Flagship models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002'], "Proprietary Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini'], "Open-source Flagship Models": ['Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM'], "Open-source Efficiency Models": ['Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'], } def get_display_model_name(model_name): return MODEL_NAME_MAP.get(model_name, model_name) def get_df(selected_super_group, selected_model_group): original_dimension = get_original_dimension(selected_super_group) data = [] for model in MODEL_GROUPS[selected_model_group]: model_data = MODEL_DATA[model] summary = SUMMARY_DATA[model] core_noncot_score = summary["core_noncot"]["macro_mean_score"] core_cot_score = summary["core_cot"]["macro_mean_score"] row = { "Models": get_display_model_name(model), # Use the mapped name "Overall": round(summary["overall_score"] * 100, 2), "Core(w/o CoT)": round(core_noncot_score * 100, 2), "Core(w/ CoT)": round(core_cot_score * 100, 2), "Open-ended": round(summary["open"]["macro_mean_score"] * 100, 2) } for keyword in SUPER_GROUPS[selected_super_group]: original_keyword = get_original_keyword(keyword) if original_dimension in model_data and original_keyword in model_data[original_dimension]: row[keyword] = round(model_data[original_dimension][original_keyword]["average_score"] * 100, 2) else: row[keyword] = None data.append(row) df = pd.DataFrame(data) df = df.sort_values(by="Overall", ascending=False) return df def get_leaderboard_data(selected_super_group, selected_model_group): df = get_df(selected_super_group, selected_model_group) headers = ["Models", "Overall", "Core(w/o CoT)", "Core(w/ CoT)", "Open-ended"] + SUPER_GROUPS[selected_super_group] data = df[headers].values.tolist() return headers, data