nesticot's picture
Upload 22 files
4a6d004 verified
import polars as pl
import numpy as np
import joblib
loaded_model = joblib.load('joblib_model/barrel_model.joblib')
in_zone_model = joblib.load('joblib_model/in_zone_model_knn_20240410.joblib')
attack_zone_model = joblib.load('joblib_model/model_attack_zone.joblib')
xwoba_model = joblib.load('joblib_model/xwoba_model.joblib')
px_model = joblib.load('joblib_model/linear_reg_model_x.joblib')
pz_model = joblib.load('joblib_model/linear_reg_model_z.joblib')
class df_update:
def __init__(self):
pass
def update(self, df_clone: pl.DataFrame):
df = df_clone.clone()
# Assuming px_model is defined and df is your DataFrame
hit_codes = ['single',
'double','home_run', 'triple']
ab_codes = ['single', 'strikeout', 'field_out',
'grounded_into_double_play', 'fielders_choice', 'force_out',
'double', 'field_error', 'home_run', 'triple',
'double_play',
'fielders_choice_out', 'strikeout_double_play',
'other_out','triple_play']
obp_true_codes = ['single', 'walk',
'double','home_run', 'triple',
'hit_by_pitch', 'intent_walk']
obp_codes = ['single', 'strikeout', 'walk', 'field_out',
'grounded_into_double_play', 'fielders_choice', 'force_out',
'double', 'sac_fly', 'field_error', 'home_run', 'triple',
'hit_by_pitch', 'double_play', 'intent_walk',
'fielders_choice_out', 'strikeout_double_play',
'sac_fly_double_play',
'other_out','triple_play']
contact_codes = ['In play, no out',
'Foul', 'In play, out(s)',
'In play, run(s)',
'Foul Bunt']
bip_codes = ['In play, no out', 'In play, run(s)','In play, out(s)']
conditions_barrel = [
df['launch_speed'].is_null(),
(df['launch_speed'] * 1.5 - df['launch_angle'] >= 117) &
(df['launch_speed'] + df['launch_angle'] >= 124) &
(df['launch_speed'] >= 98) &
(df['launch_angle'] >= 4) & (df['launch_angle'] <= 50)
]
choices_barrel = [False, True]
conditions_tb = [
(df['event_type'] == 'single'),
(df['event_type'] == 'double'),
(df['event_type'] == 'triple'),
(df['event_type'] == 'home_run')
]
choices_tb = [1, 2, 3, 4]
conditions_woba = [
df['event_type'].is_in(['strikeout', 'field_out', 'sac_fly', 'force_out', 'grounded_into_double_play', 'fielders_choice', 'field_error', 'sac_bunt', 'double_play', 'fielders_choice_out', 'strikeout_double_play', 'sac_fly_double_play', 'other_out']),
df['event_type'] == 'walk',
df['event_type'] == 'hit_by_pitch',
df['event_type'] == 'single',
df['event_type'] == 'double',
df['event_type'] == 'triple',
df['event_type'] == 'home_run'
]
choices_woba = [0, 0.689, 0.720, 0.881, 1.254, 1.589, 2.048]
woba_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch', 'double', 'sac_fly', 'force_out', 'home_run', 'grounded_into_double_play', 'fielders_choice', 'field_error', 'triple', 'sac_bunt', 'double_play', 'fielders_choice_out', 'strikeout_double_play', 'sac_fly_double_play', 'other_out']
pitch_cat = {'FA': 'Fastball',
'FF': 'Fastball',
'FT': 'Fastball',
'FC': 'Fastball',
'FS': 'Off-Speed',
'FO': 'Off-Speed',
'SI': 'Fastball',
'ST': 'Breaking',
'SL': 'Breaking',
'CU': 'Breaking',
'KC': 'Breaking',
'SC': 'Off-Speed',
'GY': 'Off-Speed',
'SV': 'Breaking',
'CS': 'Breaking',
'CH': 'Off-Speed',
'KN': 'Off-Speed',
'EP': 'Breaking',
'UN': None,
'IN': None,
'PO': None,
'AB': None,
'AS': None,
'NP': None}
df = df.with_columns([
pl.when(df['type_ab'].is_not_null()).then(1).otherwise(0).alias('pa'),
pl.when(df['is_pitch']).then(1).otherwise(0).alias('pitches'),
pl.when(df['sz_top'] == 0).then(None).otherwise(df['sz_top']).alias('sz_top'),
pl.when(df['sz_bot'] == 0).then(None).otherwise(df['sz_bot']).alias('sz_bot'),
pl.when(df['zone'] > 0).then(df['zone'] < 10).otherwise(None).alias('in_zone'),
pl.Series(px_model.predict(df[['x']].fill_null(0).to_numpy())[:, 0]).alias('px_predict'),
pl.Series(pz_model.predict(df[['y']].fill_null(0).to_numpy())[:, 0] + 3.2).alias('pz_predict'),
pl.Series(in_zone_model.predict(df[['px','pz','sz_top','sz_bot']].fill_null(0).to_numpy())[:]).alias('in_zone_predict'),
pl.Series(attack_zone_model.predict(df[['px','pz','sz_top','sz_bot']].fill_null(0).to_numpy())[:]).alias('attack_zone_predict'),
pl.when(df['event_type'].is_in(hit_codes)).then(True).otherwise(False).alias('hits'),
pl.when(df['event_type'].is_in(ab_codes)).then(True).otherwise(False).alias('ab'),
pl.when(df['event_type'].is_in(obp_true_codes)).then(True).otherwise(False).alias('on_base'),
pl.when(df['event_type'].is_in(obp_codes)).then(True).otherwise(False).alias('obp'),
pl.when(df['play_description'].is_in(bip_codes)).then(True).otherwise(False).alias('bip'),
pl.when(conditions_barrel[0]).then(choices_barrel[0]).when(conditions_barrel[1]).then(choices_barrel[1]).otherwise(None).alias('barrel'),
pl.when(df['launch_angle'].is_null()).then(False).when((df['launch_angle'] >= 8) & (df['launch_angle'] <= 32)).then(True).otherwise(None).alias('sweet_spot'),
pl.when(df['launch_speed'].is_null()).then(False).when(df['launch_speed'] >= 94.5).then(True).otherwise(None).alias('hard_hit'),
pl.when(conditions_tb[0]).then(choices_tb[0]).when(conditions_tb[1]).then(choices_tb[1]).when(conditions_tb[2]).then(choices_tb[2]).when(conditions_tb[3]).then(choices_tb[3]).otherwise(None).alias('tb'),
pl.when(conditions_woba[0]).then(choices_woba[0]).when(conditions_woba[1]).then(choices_woba[1]).when(conditions_woba[2]).then(choices_woba[2]).when(conditions_woba[3]).then(choices_woba[3]).when(conditions_woba[4]).then(choices_woba[4]).when(conditions_woba[5]).then(choices_woba[5]).when(conditions_woba[6]).then(choices_woba[6]).otherwise(None).alias('woba'),
pl.when((df['play_code'] == 'S') | (df['play_code'] == 'W') | (df['play_code'] == 'T')).then(1).otherwise(0).alias('whiffs'),
pl.when((df['play_code'] == 'S') | (df['play_code'] == 'W') | (df['play_code'] == 'T') | (df['play_code'] == 'C')).then(1).otherwise(0).alias('csw'),
pl.when(pl.col('is_swing').cast(pl.Boolean)).then(1).otherwise(0).alias('swings'),
pl.col('event_type').is_in(['strikeout','strikeout_double_play']).alias('k'),
pl.col('event_type').is_in(['walk', 'intent_walk']).alias('bb'),
pl.lit(None).alias('attack_zone'),
pl.lit(None).alias('woba_pred'),
pl.lit(None).alias('woba_pred_contact')
])
df = df.with_columns([
pl.when(df['event_type'].is_in(woba_codes)).then(1).otherwise(None).alias('woba_codes'),
pl.when(df['event_type'].is_in(woba_codes)).then(1).otherwise(None).alias('xwoba_codes'),
pl.when((pl.col('tb') >= 0)).then(df['woba']).otherwise(None).alias('woba_contact'),
pl.when(pl.col('px').is_null()).then(pl.col('px_predict')).otherwise(pl.col('px')).alias('px'),
pl.when(pl.col('pz').is_null()).then(pl.col('pz_predict')).otherwise(pl.col('pz')).alias('pz'),
pl.when(pl.col('in_zone').is_null()).then(pl.col('in_zone_predict')).otherwise(pl.col('in_zone')).alias('in_zone'),
pl.when(df['launch_speed'].is_null()).then(None).otherwise(df['barrel']).alias('barrel'),
pl.lit('average').alias('average'),
pl.when(pl.col('in_zone') == False).then(True).otherwise(False).alias('out_zone'),
pl.when((pl.col('in_zone') == True) & (pl.col('swings') == 1)).then(True).otherwise(False).alias('zone_swing'),
pl.when((pl.col('in_zone') == True) & (pl.col('swings') == 1) & (pl.col('whiffs') == 0)).then(True).otherwise(False).alias('zone_contact'),
pl.when((pl.col('in_zone') == False) & (pl.col('swings') == 1)).then(True).otherwise(False).alias('ozone_swing'),
pl.when((pl.col('in_zone') == False) & (pl.col('swings') == 1) & (pl.col('whiffs') == 0)).then(True).otherwise(False).alias('ozone_contact'),
pl.when(pl.col('event_type').str.contains('strikeout')).then(True).otherwise(False).alias('k'),
pl.when(pl.col('event_type').is_in(['walk', 'intent_walk'])).then(True).otherwise(False).alias('bb'),
pl.when(pl.col('attack_zone').is_null()).then(pl.col('attack_zone_predict')).otherwise(pl.col('attack_zone')).alias('attack_zone'),
])
df = df.with_columns([
(df['k'].cast(pl.Float32) - df['bb'].cast(pl.Float32)).alias('k_minus_bb'),
(df['bb'].cast(pl.Float32) - df['k'].cast(pl.Float32)).alias('bb_minus_k'),
(df['launch_speed'] > 0).alias('bip_div'),
(df['attack_zone'] == 0).alias('heart'),
(df['attack_zone'] == 1).alias('shadow'),
(df['attack_zone'] == 2).alias('chase'),
(df['attack_zone'] == 3).alias('waste'),
((df['attack_zone'] == 0) & (df['swings'] == 1)).alias('heart_swing'),
((df['attack_zone'] == 1) & (df['swings'] == 1)).alias('shadow_swing'),
((df['attack_zone'] == 2) & (df['swings'] == 1)).alias('chase_swing'),
((df['attack_zone'] == 3) & (df['swings'] == 1)).alias('waste_swing'),
((df['attack_zone'] == 0) & (df['whiffs'] == 1)).alias('heart_whiff'),
((df['attack_zone'] == 1) & (df['whiffs'] == 1)).alias('shadow_whiff'),
((df['attack_zone'] == 2) & (df['whiffs'] == 1)).alias('chase_whiff'),
((df['attack_zone'] == 3) & (df['whiffs'] == 1)).alias('waste_whiff')
])
[0, 0.689, 0.720, 0.881, 1.254, 1.589, 2.048]
df = df.with_columns([
pl.Series(
[sum(x) for x in xwoba_model.predict_proba(df[['launch_angle', 'launch_speed']].fill_null(0).to_numpy()[:]) * ([0, 0.881, 1.254, 1.589, 2.048])]
).alias('woba_pred_predict')
])
df = df.with_columns([
pl.when(pl.col('event_type').is_in(['walk'])).then(0.689)
.when(pl.col('event_type').is_in(['hit_by_pitch'])).then(0.720)
.when(pl.col('event_type').is_in(['strikeout', 'strikeout_double_play'])).then(0)
.otherwise(pl.col('woba_pred_predict')).alias('woba_pred_predict')
])
df = df.with_columns([
pl.when(pl.col('woba_codes').is_null()).then(None).otherwise(pl.col('woba_pred_predict')).alias('woba_pred'),
pl.when(pl.col('bip')!=1).then(None).otherwise(pl.col('woba_pred_predict')).alias('woba_pred_contact'),
])
df = df.with_columns([
pl.when(pl.col('trajectory').is_in(['bunt_popup'])).then(pl.lit('popup'))
.when(pl.col('trajectory').is_in(['bunt_grounder'])).then(pl.lit('ground_ball'))
.when(pl.col('trajectory').is_in(['bunt_line_drive'])).then(pl.lit('line_drive'))
.when(pl.col('trajectory').is_in([''])).then(pl.lit(None))
.otherwise(pl.col('trajectory')).alias('trajectory')
])
# Create one-hot encoded columns for the trajectory column
dummy_df = df.select(pl.col('trajectory')).to_dummies()
# Rename the one-hot encoded columns
dummy_df = dummy_df.rename({
'trajectory_fly_ball': 'trajectory_fly_ball',
'trajectory_ground_ball': 'trajectory_ground_ball',
'trajectory_line_drive': 'trajectory_line_drive',
'trajectory_popup': 'trajectory_popup'
})
# Ensure the columns are present in the DataFrame
for col in ['trajectory_fly_ball', 'trajectory_ground_ball', 'trajectory_line_drive', 'trajectory_popup']:
if col not in dummy_df.columns:
dummy_df = dummy_df.with_columns(pl.lit(0).alias(col))
# Join the one-hot encoded columns back to the original DataFrame
df = df.hstack(dummy_df)
# Check if 'trajectory_null' column exists and drop it
if 'trajectory_null' in df.columns:
df = df.drop('trajectory_null')
return df
# Assuming df is your Polars DataFrame
def update_summary(self, df: pl.DataFrame, pitcher: bool = True) -> pl.DataFrame:
"""
Update summary statistics for pitchers or batters.
Parameters:
df (pl.DataFrame): The input Polars DataFrame containing player statistics.
pitcher (bool): A flag indicating whether to calculate statistics for pitchers (True) or batters (False).
Returns:
pl.DataFrame: A Polars DataFrame with aggregated and calculated summary statistics.
"""
# Determine the position based on the pitcher flag
if pitcher:
position = 'pitcher'
else:
position = 'batter'
# Group by position_id and position_name, then aggregate various statistics
df_summ = df.group_by([f'{position}_id', f'{position}_name']).agg([
pl.col('pa').sum().alias('pa'),
pl.col('ab').sum().alias('ab'),
pl.col('obp').sum().alias('obp_pa'),
pl.col('hits').sum().alias('hits'),
pl.col('on_base').sum().alias('on_base'),
pl.col('k').sum().alias('k'),
pl.col('bb').sum().alias('bb'),
pl.col('bb_minus_k').sum().alias('bb_minus_k'),
pl.col('csw').sum().alias('csw'),
pl.col('bip').sum().alias('bip'),
pl.col('bip_div').sum().alias('bip_div'),
pl.col('tb').sum().alias('tb'),
pl.col('woba').sum().alias('woba'),
pl.col('woba_contact').sum().alias('woba_contact'),
pl.col('woba_pred').sum().alias('xwoba'),
pl.col('woba_pred_contact').sum().alias('xwoba_contact'),
pl.col('woba_codes').sum().alias('woba_codes'),
pl.col('xwoba_codes').sum().alias('xwoba_codes'),
pl.col('hard_hit').sum().alias('hard_hit'),
pl.col('barrel').sum().alias('barrel'),
pl.col('sweet_spot').sum().alias('sweet_spot'),
pl.col('launch_speed').max().alias('max_launch_speed'),
pl.col('launch_speed').quantile(0.90).alias('launch_speed_90'),
pl.col('launch_speed').mean().alias('launch_speed'),
pl.col('launch_angle').mean().alias('launch_angle'),
pl.col('is_pitch').sum().alias('pitches'),
pl.col('swings').sum().alias('swings'),
pl.col('in_zone').sum().alias('in_zone'),
pl.col('out_zone').sum().alias('out_zone'),
pl.col('whiffs').sum().alias('whiffs'),
pl.col('zone_swing').sum().alias('zone_swing'),
pl.col('zone_contact').sum().alias('zone_contact'),
pl.col('ozone_swing').sum().alias('ozone_swing'),
pl.col('ozone_contact').sum().alias('ozone_contact'),
pl.col('trajectory_ground_ball').sum().alias('ground_ball'),
pl.col('trajectory_line_drive').sum().alias('line_drive'),
pl.col('trajectory_fly_ball').sum().alias('fly_ball'),
pl.col('trajectory_popup').sum().alias('pop_up'),
pl.col('attack_zone').count().alias('attack_zone'),
pl.col('heart').sum().alias('heart'),
pl.col('shadow').sum().alias('shadow'),
pl.col('chase').sum().alias('chase'),
pl.col('waste').sum().alias('waste'),
pl.col('heart_swing').sum().alias('heart_swing'),
pl.col('shadow_swing').sum().alias('shadow_swing'),
pl.col('chase_swing').sum().alias('chase_swing'),
pl.col('waste_swing').sum().alias('waste_swing'),
pl.col('heart_whiff').sum().alias('heart_whiff'),
pl.col('shadow_whiff').sum().alias('shadow_whiff'),
pl.col('chase_whiff').sum().alias('chase_whiff'),
pl.col('waste_whiff').sum().alias('waste_whiff')
])
# Add calculated columns to the summary DataFrame
df_summ = df_summ.with_columns([
(pl.col('hits') / pl.col('ab')).alias('avg'),
(pl.col('on_base') / pl.col('obp_pa')).alias('obp'),
(pl.col('tb') / pl.col('ab')).alias('slg'),
(pl.col('on_base') / pl.col('obp_pa') + pl.col('tb') / pl.col('ab')).alias('ops'),
(pl.col('k') / pl.col('pa')).alias('k_percent'),
(pl.col('bb') / pl.col('pa')).alias('bb_percent'),
(pl.col('bb_minus_k') / pl.col('pa')).alias('bb_minus_k_percent'),
(pl.col('bb') / pl.col('k')).alias('bb_over_k_percent'),
(pl.col('csw') / pl.col('pitches')).alias('csw_percent'),
(pl.col('sweet_spot') / pl.col('bip_div')).alias('sweet_spot_percent'),
(pl.col('woba') / pl.col('woba_codes')).alias('woba_percent'),
(pl.col('woba_contact') / pl.col('bip')).alias('woba_percent_contact'),
(pl.col('hard_hit') / pl.col('bip_div')).alias('hard_hit_percent'),
(pl.col('barrel') / pl.col('bip_div')).alias('barrel_percent'),
(pl.col('zone_contact') / pl.col('zone_swing')).alias('zone_contact_percent'),
(pl.col('zone_swing') / pl.col('in_zone')).alias('zone_swing_percent'),
(pl.col('in_zone') / pl.col('pitches')).alias('zone_percent'),
(pl.col('ozone_swing') / (pl.col('pitches') - pl.col('in_zone'))).alias('chase_percent'),
(pl.col('ozone_contact') / pl.col('ozone_swing')).alias('chase_contact'),
(pl.col('swings') / pl.col('pitches')).alias('swing_percent'),
(pl.col('whiffs') / pl.col('swings')).alias('whiff_rate'),
(pl.col('whiffs') / pl.col('pitches')).alias('swstr_rate'),
(pl.col('ground_ball') / pl.col('bip')).alias('ground_ball_percent'),
(pl.col('line_drive') / pl.col('bip')).alias('line_drive_percent'),
(pl.col('fly_ball') / pl.col('bip')).alias('fly_ball_percent'),
(pl.col('pop_up') / pl.col('bip')).alias('pop_up_percent'),
(pl.col('heart') / pl.col('attack_zone')).alias('heart_zone_percent'),
(pl.col('shadow') / pl.col('attack_zone')).alias('shadow_zone_percent'),
(pl.col('chase') / pl.col('attack_zone')).alias('chase_zone_percent'),
(pl.col('waste') / pl.col('attack_zone')).alias('waste_zone_percent'),
(pl.col('heart_swing') / pl.col('heart')).alias('heart_zone_swing_percent'),
(pl.col('shadow_swing') / pl.col('shadow')).alias('shadow_zone_swing_percent'),
(pl.col('chase_swing') / pl.col('chase')).alias('chase_zone_swing_percent'),
(pl.col('waste_swing') / pl.col('waste')).alias('waste_zone_swing_percent'),
(pl.col('heart_whiff') / pl.col('heart_swing')).alias('heart_zone_whiff_percent'),
(pl.col('shadow_whiff') / pl.col('shadow_swing')).alias('shadow_zone_whiff_percent'),
(pl.col('chase_whiff') / pl.col('chase_swing')).alias('chase_zone_whiff_percent'),
(pl.col('waste_whiff') / pl.col('waste_swing')).alias('waste_zone_whiff_percent'),
(pl.col('xwoba') / pl.col('xwoba_codes')).alias('xwoba_percent'),
(pl.col('xwoba_contact') / pl.col('bip')).alias('xwoba_percent_contact')
])
return df_summ
# Assuming df is your Polars DataFrame
def update_summary_select(self, df: pl.DataFrame, selection: list) -> pl.DataFrame:
"""
Update summary statistics for pitchers or batters.
Parameters:
df (pl.DataFrame): The input Polars DataFrame containing player statistics.
pitcher (bool): A flag indicating whether to calculate statistics for pitchers (True) or batters (False).
Returns:
pl.DataFrame: A Polars DataFrame with aggregated and calculated summary statistics.
"""
# Group by position_id and position_name, then aggregate various statistics
df_summ = df.group_by(selection).agg([
pl.col('pa').sum().alias('pa'),
pl.col('ab').sum().alias('ab'),
pl.col('obp').sum().alias('obp_pa'),
pl.col('hits').sum().alias('hits'),
pl.col('on_base').sum().alias('on_base'),
pl.col('k').sum().alias('k'),
pl.col('bb').sum().alias('bb'),
pl.col('bb_minus_k').sum().alias('bb_minus_k'),
pl.col('csw').sum().alias('csw'),
pl.col('bip').sum().alias('bip'),
pl.col('bip_div').sum().alias('bip_div'),
pl.col('tb').sum().alias('tb'),
pl.col('woba').sum().alias('woba'),
pl.col('woba_contact').sum().alias('woba_contact'),
pl.col('woba_pred').sum().alias('xwoba'),
pl.col('woba_pred_contact').sum().alias('xwoba_contact'),
pl.col('woba_codes').sum().alias('woba_codes'),
pl.col('xwoba_codes').sum().alias('xwoba_codes'),
pl.col('hard_hit').sum().alias('hard_hit'),
pl.col('barrel').sum().alias('barrel'),
pl.col('sweet_spot').sum().alias('sweet_spot'),
pl.col('launch_speed').max().alias('max_launch_speed'),
pl.col('launch_speed').quantile(0.90).alias('launch_speed_90'),
pl.col('launch_speed').mean().alias('launch_speed'),
pl.col('launch_angle').mean().alias('launch_angle'),
pl.col('is_pitch').sum().alias('pitches'),
pl.col('swings').sum().alias('swings'),
pl.col('in_zone').sum().alias('in_zone'),
pl.col('out_zone').sum().alias('out_zone'),
pl.col('whiffs').sum().alias('whiffs'),
pl.col('zone_swing').sum().alias('zone_swing'),
pl.col('zone_contact').sum().alias('zone_contact'),
pl.col('ozone_swing').sum().alias('ozone_swing'),
pl.col('ozone_contact').sum().alias('ozone_contact'),
pl.col('trajectory_ground_ball').sum().alias('ground_ball'),
pl.col('trajectory_line_drive').sum().alias('line_drive'),
pl.col('trajectory_fly_ball').sum().alias('fly_ball'),
pl.col('trajectory_popup').sum().alias('pop_up'),
pl.col('attack_zone').count().alias('attack_zone'),
pl.col('heart').sum().alias('heart'),
pl.col('shadow').sum().alias('shadow'),
pl.col('chase').sum().alias('chase'),
pl.col('waste').sum().alias('waste'),
pl.col('heart_swing').sum().alias('heart_swing'),
pl.col('shadow_swing').sum().alias('shadow_swing'),
pl.col('chase_swing').sum().alias('chase_swing'),
pl.col('waste_swing').sum().alias('waste_swing'),
pl.col('heart_whiff').sum().alias('heart_whiff'),
pl.col('shadow_whiff').sum().alias('shadow_whiff'),
pl.col('chase_whiff').sum().alias('chase_whiff'),
pl.col('waste_whiff').sum().alias('waste_whiff')
])
# Add calculated columns to the summary DataFrame
df_summ = df_summ.with_columns([
(pl.col('hits') / pl.col('ab')).alias('avg'),
(pl.col('on_base') / pl.col('obp_pa')).alias('obp'),
(pl.col('tb') / pl.col('ab')).alias('slg'),
(pl.col('on_base') / pl.col('obp_pa') + pl.col('tb') / pl.col('ab')).alias('ops'),
(pl.col('k') / pl.col('pa')).alias('k_percent'),
(pl.col('bb') / pl.col('pa')).alias('bb_percent'),
(pl.col('bb_minus_k') / pl.col('pa')).alias('bb_minus_k_percent'),
(pl.col('bb') / pl.col('k')).alias('bb_over_k_percent'),
(pl.col('csw') / pl.col('pitches')).alias('csw_percent'),
(pl.col('sweet_spot') / pl.col('bip_div')).alias('sweet_spot_percent'),
(pl.col('woba') / pl.col('woba_codes')).alias('woba_percent'),
(pl.col('woba_contact') / pl.col('bip')).alias('woba_percent_contact'),
(pl.col('hard_hit') / pl.col('bip_div')).alias('hard_hit_percent'),
(pl.col('barrel') / pl.col('bip_div')).alias('barrel_percent'),
(pl.col('zone_contact') / pl.col('zone_swing')).alias('zone_contact_percent'),
(pl.col('zone_swing') / pl.col('in_zone')).alias('zone_swing_percent'),
(pl.col('in_zone') / pl.col('pitches')).alias('zone_percent'),
(pl.col('ozone_swing') / (pl.col('pitches') - pl.col('in_zone'))).alias('chase_percent'),
(pl.col('ozone_contact') / pl.col('ozone_swing')).alias('chase_contact'),
(pl.col('swings') / pl.col('pitches')).alias('swing_percent'),
(pl.col('whiffs') / pl.col('swings')).alias('whiff_rate'),
(pl.col('whiffs') / pl.col('pitches')).alias('swstr_rate'),
(pl.col('ground_ball') / pl.col('bip')).alias('ground_ball_percent'),
(pl.col('line_drive') / pl.col('bip')).alias('line_drive_percent'),
(pl.col('fly_ball') / pl.col('bip')).alias('fly_ball_percent'),
(pl.col('pop_up') / pl.col('bip')).alias('pop_up_percent'),
(pl.col('heart') / pl.col('attack_zone')).alias('heart_zone_percent'),
(pl.col('shadow') / pl.col('attack_zone')).alias('shadow_zone_percent'),
(pl.col('chase') / pl.col('attack_zone')).alias('chase_zone_percent'),
(pl.col('waste') / pl.col('attack_zone')).alias('waste_zone_percent'),
(pl.col('heart_swing') / pl.col('heart')).alias('heart_zone_swing_percent'),
(pl.col('shadow_swing') / pl.col('shadow')).alias('shadow_zone_swing_percent'),
(pl.col('chase_swing') / pl.col('chase')).alias('chase_zone_swing_percent'),
(pl.col('waste_swing') / pl.col('waste')).alias('waste_zone_swing_percent'),
(pl.col('heart_whiff') / pl.col('heart_swing')).alias('heart_zone_whiff_percent'),
(pl.col('shadow_whiff') / pl.col('shadow_swing')).alias('shadow_zone_whiff_percent'),
(pl.col('chase_whiff') / pl.col('chase_swing')).alias('chase_zone_whiff_percent'),
(pl.col('waste_whiff') / pl.col('waste_swing')).alias('waste_zone_whiff_percent'),
(pl.col('xwoba') / pl.col('xwoba_codes')).alias('xwoba_percent'),
(pl.col('xwoba_contact') / pl.col('bip')).alias('xwoba_percent_contact')
])
return df_summ