|
import gradio as gr |
|
import json |
|
import requests |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = 'Pyg' |
|
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Pygmalion-7B-SuperHOT-8K-GPTQ") |
|
model = AutoModelForCausalLM.from_pretrained("TheBloke/Pygmalion-7B-SuperHOT-8K-GPTQ") |
|
|
|
def generate_text(input_text): |
|
input_ids = tokenizer.encode(input_text, return_tensors='pt') |
|
outputs = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) |
|
text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return text |
|
|
|
iface = gr.Interface(fn=generate_text, |
|
inputs=gr.inputs.Textbox(lines=5, placeholder='Enter text here...'), |
|
outputs=gr.outputs.Textbox()) |
|
|
|
iface.launch() |