Taizun commited on
Commit
7cb92c4
·
verified ·
1 Parent(s): bf119f0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image, ImageDraw, ImageFont
3
+ import scipy.io.wavfile as wavfile
4
+ from transformers import pipeline
5
+
6
+ # Load pipelines
7
+ narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs")
8
+ object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
9
+
10
+ # Function to generate audio from text
11
+ def generate_audio(text):
12
+ narrated_text = narrator(text)
13
+ wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0])
14
+ return "output.wav"
15
+
16
+ # Function to read and summarize detected objects
17
+ def read_objects(detection_objects):
18
+ object_counts = {}
19
+ for detection in detection_objects:
20
+ label = detection['label']
21
+ object_counts[label] = object_counts.get(label, 0) + 1
22
+
23
+ response = "This picture contains"
24
+ labels = list(object_counts.keys())
25
+ for i, label in enumerate(labels):
26
+ response += f" {object_counts[label]} {label}"
27
+ if object_counts[label] > 1:
28
+ response += "s"
29
+ if i < len(labels) - 2:
30
+ response += ","
31
+ elif i == len(labels) - 2:
32
+ response += " and"
33
+ response += "."
34
+ return response
35
+
36
+ # Function to draw bounding boxes on the image
37
+ def draw_bounding_boxes(image, detections):
38
+ draw_image = image.copy()
39
+ draw = ImageDraw.Draw(draw_image)
40
+ font = ImageFont.load_default()
41
+
42
+ for detection in detections:
43
+ box = detection['box']
44
+ xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax']
45
+ draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
46
+
47
+ label = detection['label']
48
+ score = detection['score']
49
+ text = f"{label} {score:.2f}"
50
+ text_size = draw.textbbox((xmin, ymin), text, font=font)
51
+ draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
52
+ draw.text((xmin, ymin), text, fill="white", font=font)
53
+
54
+ return draw_image
55
+
56
+ # Main function to process the image
57
+ def detect_object(image):
58
+ detections = object_detector(image)
59
+ processed_image = draw_bounding_boxes(image, detections)
60
+ description_text = read_objects(detections)
61
+ processed_audio = generate_audio(description_text)
62
+ return processed_image, processed_audio
63
+
64
+ # Gradio interface
65
+ description_text = """
66
+ # Multi-Object Detection with Audio Narration
67
+
68
+ Upload an image to detect objects and hear a natural language description.
69
+
70
+ ### Credits:
71
+ Developed by Taizun S
72
+ """
73
+
74
+ demo = gr.Interface(
75
+ fn=detect_object,
76
+ inputs=gr.Image(label="Upload an Image", type="pil"),
77
+ outputs=[
78
+ gr.Image(label="Processed Image", type="pil"),
79
+ gr.Audio(label="Generated Audio")
80
+ ],
81
+ title="Multi-Object Detection and Narration",
82
+ description=description_text,
83
+ )
84
+
85
+ demo.launch()