import gradio as gr from PIL import Image, ImageDraw, ImageFont import scipy.io.wavfile as wavfile from transformers import pipeline # Load pipelines narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") # Function to generate audio from text def generate_audio(text): narrated_text = narrator(text) wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) return "output.wav" # Function to read and summarize detected objects def read_objects(detection_objects): object_counts = {} for detection in detection_objects: label = detection['label'] object_counts[label] = object_counts.get(label, 0) + 1 response = "This picture contains" labels = list(object_counts.keys()) for i, label in enumerate(labels): response += f" {object_counts[label]} {label}" if object_counts[label] > 1: response += "s" if i < len(labels) - 2: response += "," elif i == len(labels) - 2: response += " and" response += "." return response # Function to draw bounding boxes on the image def draw_bounding_boxes(image, detections): draw_image = image.copy() draw = ImageDraw.Draw(draw_image) font = ImageFont.load_default() for detection in detections: box = detection['box'] xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax'] draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) label = detection['label'] score = detection['score'] text = f"{label} {score:.2f}" text_size = draw.textbbox((xmin, ymin), text, font=font) draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") draw.text((xmin, ymin), text, fill="white", font=font) return draw_image # Main function to process the image def detect_object(image): detections = object_detector(image) processed_image = draw_bounding_boxes(image, detections) description_text = read_objects(detections) processed_audio = generate_audio(description_text) return processed_image, processed_audio # Gradio interface description_text = """ # Multi-Object Detection with Audio Narration Upload an image to detect objects and hear a natural language description. ### Credits: Developed by Taizun S """ demo = gr.Interface( fn=detect_object, inputs=gr.Image(label="Upload an Image", type="pil"), outputs=[ gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio") ], title="Multi-Object Detection and Narration", description=description_text, ) demo.launch()