Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import streamlit as st
|
2 |
# import torch
|
3 |
# from transformers import GPTNeoXForCausalLM, AutoTokenizer
|
4 |
# from sentence_transformers import SentenceTransformer
|
5 |
# import faiss
|
6 |
-
# import fitz
|
7 |
# from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
|
9 |
-
# #
|
10 |
# st.set_page_config(page_title="π Smart Book Analyst", layout="wide")
|
11 |
|
12 |
# # Configuration
|
13 |
# MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
14 |
# EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
15 |
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
# CHUNK_SIZE =
|
17 |
-
# CHUNK_OVERLAP =
|
|
|
18 |
|
19 |
# @st.cache_resource
|
20 |
# def load_models():
|
21 |
# try:
|
22 |
-
# # Load
|
23 |
# tokenizer = AutoTokenizer.from_pretrained(
|
24 |
# MODEL_NAME,
|
25 |
# trust_remote_code=True
|
@@ -27,13 +191,15 @@
|
|
27 |
|
28 |
# model = GPTNeoXForCausalLM.from_pretrained(
|
29 |
# MODEL_NAME,
|
30 |
-
# device_map="auto"
|
31 |
# torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
32 |
-
# trust_remote_code=True
|
|
|
33 |
# ).eval()
|
34 |
|
35 |
-
# # Load
|
36 |
# embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
|
|
37 |
|
38 |
# return tokenizer, model, embedder
|
39 |
|
@@ -43,7 +209,6 @@
|
|
43 |
|
44 |
# tokenizer, model, embedder = load_models()
|
45 |
|
46 |
-
# # Text processing
|
47 |
# def process_text(text):
|
48 |
# splitter = RecursiveCharacterTextSplitter(
|
49 |
# chunk_size=CHUNK_SIZE,
|
@@ -52,70 +217,79 @@
|
|
52 |
# )
|
53 |
# return splitter.split_text(text)
|
54 |
|
55 |
-
# # PDF extraction
|
56 |
# def extract_pdf_text(uploaded_file):
|
57 |
# try:
|
58 |
# doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
|
59 |
-
# return "\n".join(
|
60 |
# except Exception as e:
|
61 |
# st.error(f"PDF extraction error: {str(e)}")
|
62 |
# return ""
|
63 |
|
64 |
-
# # Summarization function
|
65 |
# def generate_summary(text):
|
66 |
-
# chunks = process_text(text)[:
|
|
|
|
|
|
|
|
|
67 |
# summaries = []
|
68 |
|
69 |
-
# for chunk in chunks:
|
|
|
70 |
# prompt = f"""<|user|>
|
71 |
-
# Summarize
|
72 |
-
# {chunk[:
|
73 |
# <|assistant|>
|
74 |
# """
|
75 |
|
76 |
# inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
77 |
-
# outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
78 |
# summaries.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
79 |
|
80 |
# combined = "\n".join(summaries)
|
81 |
# final_prompt = f"""<|user|>
|
82 |
-
# Combine these
|
83 |
# {combined}
|
84 |
# <|assistant|>
|
85 |
-
#
|
86 |
|
87 |
# inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
|
88 |
-
# outputs = model.generate(
|
89 |
-
#
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
# # FAISS index creation
|
92 |
# def build_faiss_index(texts):
|
93 |
-
# embeddings = embedder.encode(texts, show_progress_bar=False)
|
94 |
# dimension = embeddings.shape[1]
|
95 |
# index = faiss.IndexFlatIP(dimension)
|
96 |
# faiss.normalize_L2(embeddings)
|
97 |
# index.add(embeddings)
|
98 |
# return index
|
99 |
|
100 |
-
# # Answer generation
|
101 |
# def generate_answer(query, context):
|
102 |
# prompt = f"""<|user|>
|
103 |
-
#
|
104 |
-
#
|
105 |
-
#
|
106 |
-
# <|assistant|>
|
107 |
-
# """
|
108 |
|
109 |
# inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
|
110 |
# outputs = model.generate(
|
111 |
# **inputs,
|
112 |
-
# max_new_tokens=
|
113 |
-
# temperature=0.
|
114 |
-
# top_p=0.
|
115 |
-
# repetition_penalty=1.
|
116 |
# do_sample=True
|
117 |
# )
|
118 |
-
# return tokenizer.decode(outputs[0], skip_special_tokens=True).split("
|
119 |
|
120 |
# # Streamlit UI
|
121 |
# st.title("π AI-Powered Book Analysis System")
|
@@ -130,6 +304,10 @@
|
|
130 |
# else:
|
131 |
# text = uploaded_file.read().decode()
|
132 |
|
|
|
|
|
|
|
|
|
133 |
# chunks = process_text(text)
|
134 |
# st.session_state.docs = chunks
|
135 |
# st.session_state.index = build_faiss_index(chunks)
|
@@ -148,14 +326,14 @@
|
|
148 |
# try:
|
149 |
# query_embed = embedder.encode([query])
|
150 |
# faiss.normalize_L2(query_embed)
|
151 |
-
# distances, indices = st.session_state.index.search(query_embed, k=
|
152 |
|
153 |
# context = "\n".join([st.session_state.docs[i] for i in indices[0]])
|
154 |
# answer = generate_answer(query, context)
|
155 |
|
156 |
# st.subheader("Answer")
|
157 |
# st.markdown(f"```\n{answer}\n```")
|
158 |
-
# st.caption("
|
159 |
|
160 |
# except Exception as e:
|
161 |
# st.error(f"Query failed: {str(e)}")
|
@@ -169,25 +347,27 @@ import faiss
|
|
169 |
import fitz
|
170 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
171 |
|
172 |
-
# Set page config
|
173 |
st.set_page_config(page_title="π Smart Book Analyst", layout="wide")
|
174 |
|
175 |
# Configuration
|
176 |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
177 |
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
178 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
179 |
-
CHUNK_SIZE = 1024
|
180 |
CHUNK_OVERLAP = 100
|
181 |
-
MAX_SUMMARY_CHUNKS = 5
|
182 |
|
183 |
@st.cache_resource
|
184 |
def load_models():
|
185 |
try:
|
186 |
-
# Load model with
|
187 |
tokenizer = AutoTokenizer.from_pretrained(
|
188 |
MODEL_NAME,
|
189 |
-
trust_remote_code=True
|
|
|
190 |
)
|
|
|
191 |
|
192 |
model = GPTNeoXForCausalLM.from_pretrained(
|
193 |
MODEL_NAME,
|
@@ -197,9 +377,9 @@ def load_models():
|
|
197 |
low_cpu_mem_usage=True
|
198 |
).eval()
|
199 |
|
200 |
-
#
|
201 |
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
202 |
-
embedder.max_seq_length =
|
203 |
|
204 |
return tokenizer, model, embedder
|
205 |
|
@@ -234,40 +414,71 @@ def generate_summary(text):
|
|
234 |
summaries = []
|
235 |
|
236 |
for i, chunk in enumerate(chunks):
|
237 |
-
|
|
|
|
|
|
|
238 |
prompt = f"""<|user|>
|
239 |
-
Summarize key points in
|
240 |
{chunk[:1500]}
|
241 |
<|assistant|>
|
242 |
"""
|
243 |
|
244 |
-
inputs = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
outputs = model.generate(
|
246 |
**inputs,
|
247 |
-
max_new_tokens=
|
248 |
-
temperature=0.
|
249 |
-
|
|
|
|
|
|
|
250 |
)
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
-
combined = "\n".join(summaries)
|
254 |
final_prompt = f"""<|user|>
|
255 |
-
Combine these into a
|
256 |
{combined}
|
257 |
<|assistant|>
|
258 |
-
|
259 |
|
260 |
inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
|
261 |
outputs = model.generate(
|
262 |
**inputs,
|
263 |
-
max_new_tokens=
|
264 |
-
temperature=0.
|
265 |
-
|
|
|
|
|
|
|
266 |
)
|
267 |
-
|
|
|
|
|
|
|
|
|
268 |
|
269 |
def build_faiss_index(texts):
|
270 |
-
embeddings = embedder.encode(
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
dimension = embeddings.shape[1]
|
272 |
index = faiss.IndexFlatIP(dimension)
|
273 |
faiss.normalize_L2(embeddings)
|
@@ -276,20 +487,35 @@ def build_faiss_index(texts):
|
|
276 |
|
277 |
def generate_answer(query, context):
|
278 |
prompt = f"""<|user|>
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
-
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
|
284 |
outputs = model.generate(
|
285 |
**inputs,
|
286 |
-
max_new_tokens=
|
287 |
-
temperature=0.
|
288 |
-
top_p=0.
|
289 |
-
repetition_penalty=1.
|
290 |
-
do_sample=True
|
|
|
|
|
291 |
)
|
292 |
-
|
|
|
|
|
|
|
|
|
293 |
|
294 |
# Streamlit UI
|
295 |
st.title("π AI-Powered Book Analysis System")
|
@@ -305,7 +531,7 @@ if uploaded_file:
|
|
305 |
text = uploaded_file.read().decode()
|
306 |
|
307 |
if not text.strip():
|
308 |
-
st.error("Uploaded file
|
309 |
st.stop()
|
310 |
|
311 |
chunks = process_text(text)
|
@@ -326,14 +552,14 @@ if 'index' in st.session_state and st.session_state.index:
|
|
326 |
try:
|
327 |
query_embed = embedder.encode([query])
|
328 |
faiss.normalize_L2(query_embed)
|
329 |
-
distances, indices = st.session_state.index.search(query_embed, k=
|
330 |
|
331 |
context = "\n".join([st.session_state.docs[i] for i in indices[0]])
|
332 |
answer = generate_answer(query, context)
|
333 |
|
334 |
st.subheader("Answer")
|
335 |
st.markdown(f"```\n{answer}\n```")
|
336 |
-
st.caption(f"Confidence: {distances[0][0]:.2f}")
|
337 |
|
338 |
except Exception as e:
|
339 |
st.error(f"Query failed: {str(e)}")
|
|
|
1 |
+
# # import streamlit as st
|
2 |
+
# # import torch
|
3 |
+
# # from transformers import GPTNeoXForCausalLM, AutoTokenizer
|
4 |
+
# # from sentence_transformers import SentenceTransformer
|
5 |
+
# # import faiss
|
6 |
+
# # import fitz # PyMuPDF
|
7 |
+
# # from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
+
|
9 |
+
# # # 1. Set page config FIRST
|
10 |
+
# # st.set_page_config(page_title="π Smart Book Analyst", layout="wide")
|
11 |
+
|
12 |
+
# # # Configuration
|
13 |
+
# # MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
14 |
+
# # EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
15 |
+
# # DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
# # CHUNK_SIZE = 512
|
17 |
+
# # CHUNK_OVERLAP = 50
|
18 |
+
|
19 |
+
# # @st.cache_resource
|
20 |
+
# # def load_models():
|
21 |
+
# # try:
|
22 |
+
# # # Load Granite model
|
23 |
+
# # tokenizer = AutoTokenizer.from_pretrained(
|
24 |
+
# # MODEL_NAME,
|
25 |
+
# # trust_remote_code=True
|
26 |
+
# # )
|
27 |
+
|
28 |
+
# # model = GPTNeoXForCausalLM.from_pretrained(
|
29 |
+
# # MODEL_NAME,
|
30 |
+
# # device_map="auto" if DEVICE == "cuda" else None,
|
31 |
+
# # torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
32 |
+
# # trust_remote_code=True
|
33 |
+
# # ).eval()
|
34 |
+
|
35 |
+
# # # Load sentence transformer for embeddings
|
36 |
+
# # embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
37 |
+
|
38 |
+
# # return tokenizer, model, embedder
|
39 |
+
|
40 |
+
# # except Exception as e:
|
41 |
+
# # st.error(f"Model loading failed: {str(e)}")
|
42 |
+
# # st.stop()
|
43 |
+
|
44 |
+
# # tokenizer, model, embedder = load_models()
|
45 |
+
|
46 |
+
# # # Text processing
|
47 |
+
# # def process_text(text):
|
48 |
+
# # splitter = RecursiveCharacterTextSplitter(
|
49 |
+
# # chunk_size=CHUNK_SIZE,
|
50 |
+
# # chunk_overlap=CHUNK_OVERLAP,
|
51 |
+
# # length_function=len
|
52 |
+
# # )
|
53 |
+
# # return splitter.split_text(text)
|
54 |
+
|
55 |
+
# # # PDF extraction
|
56 |
+
# # def extract_pdf_text(uploaded_file):
|
57 |
+
# # try:
|
58 |
+
# # doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
|
59 |
+
# # return "\n".join([page.get_text() for page in doc])
|
60 |
+
# # except Exception as e:
|
61 |
+
# # st.error(f"PDF extraction error: {str(e)}")
|
62 |
+
# # return ""
|
63 |
+
|
64 |
+
# # # Summarization function
|
65 |
+
# # def generate_summary(text):
|
66 |
+
# # chunks = process_text(text)[:10]
|
67 |
+
# # summaries = []
|
68 |
+
|
69 |
+
# # for chunk in chunks:
|
70 |
+
# # prompt = f"""<|user|>
|
71 |
+
# # Summarize this text section focusing on key themes, characters, and plot points:
|
72 |
+
# # {chunk[:2000]}
|
73 |
+
# # <|assistant|>
|
74 |
+
# # """
|
75 |
+
|
76 |
+
# # inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
77 |
+
# # outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.3)
|
78 |
+
# # summaries.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
79 |
+
|
80 |
+
# # combined = "\n".join(summaries)
|
81 |
+
# # final_prompt = f"""<|user|>
|
82 |
+
# # Combine these section summaries into a coherent book summary:
|
83 |
+
# # {combined}
|
84 |
+
# # <|assistant|>
|
85 |
+
# # The comprehensive summary is:"""
|
86 |
+
|
87 |
+
# # inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
|
88 |
+
# # outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.5)
|
89 |
+
# # return tokenizer.decode(outputs[0], skip_special_tokens=True).split(":")[-1].strip()
|
90 |
+
|
91 |
+
# # # FAISS index creation
|
92 |
+
# # def build_faiss_index(texts):
|
93 |
+
# # embeddings = embedder.encode(texts, show_progress_bar=False)
|
94 |
+
# # dimension = embeddings.shape[1]
|
95 |
+
# # index = faiss.IndexFlatIP(dimension)
|
96 |
+
# # faiss.normalize_L2(embeddings)
|
97 |
+
# # index.add(embeddings)
|
98 |
+
# # return index
|
99 |
+
|
100 |
+
# # # Answer generation
|
101 |
+
# # def generate_answer(query, context):
|
102 |
+
# # prompt = f"""<|user|>
|
103 |
+
# # Using this context: {context}
|
104 |
+
# # Answer the question precisely and truthfully. If unsure, say "I don't know".
|
105 |
+
# # Question: {query}
|
106 |
+
# # <|assistant|>
|
107 |
+
# # """
|
108 |
+
|
109 |
+
# # inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
|
110 |
+
# # outputs = model.generate(
|
111 |
+
# # **inputs,
|
112 |
+
# # max_new_tokens=300,
|
113 |
+
# # temperature=0.4,
|
114 |
+
# # top_p=0.9,
|
115 |
+
# # repetition_penalty=1.2,
|
116 |
+
# # do_sample=True
|
117 |
+
# # )
|
118 |
+
# # return tokenizer.decode(outputs[0], skip_special_tokens=True).split("<|assistant|>")[-1].strip()
|
119 |
+
|
120 |
+
# # # Streamlit UI
|
121 |
+
# # st.title("π AI-Powered Book Analysis System")
|
122 |
+
|
123 |
+
# # uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"])
|
124 |
+
|
125 |
+
# # if uploaded_file:
|
126 |
+
# # with st.spinner("π Analyzing book content..."):
|
127 |
+
# # try:
|
128 |
+
# # if uploaded_file.type == "application/pdf":
|
129 |
+
# # text = extract_pdf_text(uploaded_file)
|
130 |
+
# # else:
|
131 |
+
# # text = uploaded_file.read().decode()
|
132 |
+
|
133 |
+
# # chunks = process_text(text)
|
134 |
+
# # st.session_state.docs = chunks
|
135 |
+
# # st.session_state.index = build_faiss_index(chunks)
|
136 |
+
|
137 |
+
# # with st.expander("π Book Summary", expanded=True):
|
138 |
+
# # summary = generate_summary(text)
|
139 |
+
# # st.write(summary)
|
140 |
+
|
141 |
+
# # except Exception as e:
|
142 |
+
# # st.error(f"Processing failed: {str(e)}")
|
143 |
+
|
144 |
+
# # if 'index' in st.session_state and st.session_state.index:
|
145 |
+
# # query = st.text_input("Ask about the book:")
|
146 |
+
# # if query:
|
147 |
+
# # with st.spinner("π Searching for answers..."):
|
148 |
+
# # try:
|
149 |
+
# # query_embed = embedder.encode([query])
|
150 |
+
# # faiss.normalize_L2(query_embed)
|
151 |
+
# # distances, indices = st.session_state.index.search(query_embed, k=3)
|
152 |
+
|
153 |
+
# # context = "\n".join([st.session_state.docs[i] for i in indices[0]])
|
154 |
+
# # answer = generate_answer(query, context)
|
155 |
+
|
156 |
+
# # st.subheader("Answer")
|
157 |
+
# # st.markdown(f"```\n{answer}\n```")
|
158 |
+
# # st.caption("Retrieved context confidence: {:.2f}".format(distances[0][0]))
|
159 |
+
|
160 |
+
# # except Exception as e:
|
161 |
+
# # st.error(f"Query failed: {str(e)}")
|
162 |
+
|
163 |
+
|
164 |
# import streamlit as st
|
165 |
# import torch
|
166 |
# from transformers import GPTNeoXForCausalLM, AutoTokenizer
|
167 |
# from sentence_transformers import SentenceTransformer
|
168 |
# import faiss
|
169 |
+
# import fitz
|
170 |
# from langchain_text_splitters import RecursiveCharacterTextSplitter
|
171 |
|
172 |
+
# # Set page config FIRST
|
173 |
# st.set_page_config(page_title="π Smart Book Analyst", layout="wide")
|
174 |
|
175 |
# # Configuration
|
176 |
# MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
177 |
# EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
178 |
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
179 |
+
# CHUNK_SIZE = 1024 # Increased chunk size for better performance
|
180 |
+
# CHUNK_OVERLAP = 100
|
181 |
+
# MAX_SUMMARY_CHUNKS = 5 # Reduced from 10 to 5 for faster processing
|
182 |
|
183 |
# @st.cache_resource
|
184 |
# def load_models():
|
185 |
# try:
|
186 |
+
# # Load model with optimized settings
|
187 |
# tokenizer = AutoTokenizer.from_pretrained(
|
188 |
# MODEL_NAME,
|
189 |
# trust_remote_code=True
|
|
|
191 |
|
192 |
# model = GPTNeoXForCausalLM.from_pretrained(
|
193 |
# MODEL_NAME,
|
194 |
+
# device_map="auto",
|
195 |
# torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
196 |
+
# trust_remote_code=True,
|
197 |
+
# low_cpu_mem_usage=True
|
198 |
# ).eval()
|
199 |
|
200 |
+
# # Load embedder with faster model
|
201 |
# embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
202 |
+
# embedder.max_seq_length = 256 # Reduce embedding dimension
|
203 |
|
204 |
# return tokenizer, model, embedder
|
205 |
|
|
|
209 |
|
210 |
# tokenizer, model, embedder = load_models()
|
211 |
|
|
|
212 |
# def process_text(text):
|
213 |
# splitter = RecursiveCharacterTextSplitter(
|
214 |
# chunk_size=CHUNK_SIZE,
|
|
|
217 |
# )
|
218 |
# return splitter.split_text(text)
|
219 |
|
|
|
220 |
# def extract_pdf_text(uploaded_file):
|
221 |
# try:
|
222 |
# doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
|
223 |
+
# return "\n".join(page.get_text() for page in doc)
|
224 |
# except Exception as e:
|
225 |
# st.error(f"PDF extraction error: {str(e)}")
|
226 |
# return ""
|
227 |
|
|
|
228 |
# def generate_summary(text):
|
229 |
+
# chunks = process_text(text)[:MAX_SUMMARY_CHUNKS]
|
230 |
+
# if not chunks:
|
231 |
+
# return "No meaningful content found."
|
232 |
+
|
233 |
+
# progress_bar = st.progress(0)
|
234 |
# summaries = []
|
235 |
|
236 |
+
# for i, chunk in enumerate(chunks):
|
237 |
+
# progress_bar.progress((i+1)/len(chunks), text=f"Processing chunk {i+1}/{len(chunks)}...")
|
238 |
# prompt = f"""<|user|>
|
239 |
+
# Summarize key points in 2 sentences:
|
240 |
+
# {chunk[:1500]}
|
241 |
# <|assistant|>
|
242 |
# """
|
243 |
|
244 |
# inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
245 |
+
# outputs = model.generate(
|
246 |
+
# **inputs,
|
247 |
+
# max_new_tokens=150,
|
248 |
+
# temperature=0.2,
|
249 |
+
# do_sample=False # Disable sampling for faster generation
|
250 |
+
# )
|
251 |
# summaries.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
252 |
|
253 |
# combined = "\n".join(summaries)
|
254 |
# final_prompt = f"""<|user|>
|
255 |
+
# Combine these into a concise summary (3-5 paragraphs):
|
256 |
# {combined}
|
257 |
# <|assistant|>
|
258 |
+
# Summary:"""
|
259 |
|
260 |
# inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
|
261 |
+
# outputs = model.generate(
|
262 |
+
# **inputs,
|
263 |
+
# max_new_tokens=300,
|
264 |
+
# temperature=0.3,
|
265 |
+
# do_sample=False
|
266 |
+
# )
|
267 |
+
# return tokenizer.decode(outputs[0], skip_special_tokens=True).split("Summary:")[-1].strip()
|
268 |
|
|
|
269 |
# def build_faiss_index(texts):
|
270 |
+
# embeddings = embedder.encode(texts, show_progress_bar=False, batch_size=32)
|
271 |
# dimension = embeddings.shape[1]
|
272 |
# index = faiss.IndexFlatIP(dimension)
|
273 |
# faiss.normalize_L2(embeddings)
|
274 |
# index.add(embeddings)
|
275 |
# return index
|
276 |
|
|
|
277 |
# def generate_answer(query, context):
|
278 |
# prompt = f"""<|user|>
|
279 |
+
# Context: {context[:2000]}
|
280 |
+
# Q: {query}
|
281 |
+
# A:"""
|
|
|
|
|
282 |
|
283 |
# inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
|
284 |
# outputs = model.generate(
|
285 |
# **inputs,
|
286 |
+
# max_new_tokens=200,
|
287 |
+
# temperature=0.3,
|
288 |
+
# top_p=0.85,
|
289 |
+
# repetition_penalty=1.1,
|
290 |
# do_sample=True
|
291 |
# )
|
292 |
+
# return tokenizer.decode(outputs[0], skip_special_tokens=True).split("A:")[-1].strip()
|
293 |
|
294 |
# # Streamlit UI
|
295 |
# st.title("π AI-Powered Book Analysis System")
|
|
|
304 |
# else:
|
305 |
# text = uploaded_file.read().decode()
|
306 |
|
307 |
+
# if not text.strip():
|
308 |
+
# st.error("Uploaded file appears to be empty")
|
309 |
+
# st.stop()
|
310 |
+
|
311 |
# chunks = process_text(text)
|
312 |
# st.session_state.docs = chunks
|
313 |
# st.session_state.index = build_faiss_index(chunks)
|
|
|
326 |
# try:
|
327 |
# query_embed = embedder.encode([query])
|
328 |
# faiss.normalize_L2(query_embed)
|
329 |
+
# distances, indices = st.session_state.index.search(query_embed, k=2)
|
330 |
|
331 |
# context = "\n".join([st.session_state.docs[i] for i in indices[0]])
|
332 |
# answer = generate_answer(query, context)
|
333 |
|
334 |
# st.subheader("Answer")
|
335 |
# st.markdown(f"```\n{answer}\n```")
|
336 |
+
# st.caption(f"Confidence: {distances[0][0]:.2f}")
|
337 |
|
338 |
# except Exception as e:
|
339 |
# st.error(f"Query failed: {str(e)}")
|
|
|
347 |
import fitz
|
348 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
349 |
|
350 |
+
# Set page config first
|
351 |
st.set_page_config(page_title="π Smart Book Analyst", layout="wide")
|
352 |
|
353 |
# Configuration
|
354 |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
355 |
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
356 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
357 |
+
CHUNK_SIZE = 1024
|
358 |
CHUNK_OVERLAP = 100
|
359 |
+
MAX_SUMMARY_CHUNKS = 5
|
360 |
|
361 |
@st.cache_resource
|
362 |
def load_models():
|
363 |
try:
|
364 |
+
# Load model with correct tokenizer mapping
|
365 |
tokenizer = AutoTokenizer.from_pretrained(
|
366 |
MODEL_NAME,
|
367 |
+
trust_remote_code=True,
|
368 |
+
padding_side="left" # Crucial for generation quality
|
369 |
)
|
370 |
+
tokenizer.pad_token = tokenizer.eos_token
|
371 |
|
372 |
model = GPTNeoXForCausalLM.from_pretrained(
|
373 |
MODEL_NAME,
|
|
|
377 |
low_cpu_mem_usage=True
|
378 |
).eval()
|
379 |
|
380 |
+
# Configure embedder properly
|
381 |
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
382 |
+
embedder.max_seq_length = 512
|
383 |
|
384 |
return tokenizer, model, embedder
|
385 |
|
|
|
414 |
summaries = []
|
415 |
|
416 |
for i, chunk in enumerate(chunks):
|
417 |
+
# Proper progress text formatting
|
418 |
+
progress_bar.progress((i+1)/len(chunks),
|
419 |
+
text=f"Processing section {i+1}/{len(chunks)}...")
|
420 |
+
|
421 |
prompt = f"""<|user|>
|
422 |
+
Summarize the key points from this text section in 3 bullet points:
|
423 |
{chunk[:1500]}
|
424 |
<|assistant|>
|
425 |
"""
|
426 |
|
427 |
+
inputs = tokenizer(
|
428 |
+
prompt,
|
429 |
+
return_tensors="pt",
|
430 |
+
max_length=1024,
|
431 |
+
truncation=True
|
432 |
+
).to(DEVICE)
|
433 |
+
|
434 |
outputs = model.generate(
|
435 |
**inputs,
|
436 |
+
max_new_tokens=200,
|
437 |
+
temperature=0.3,
|
438 |
+
top_p=0.9,
|
439 |
+
repetition_penalty=1.1,
|
440 |
+
do_sample=True,
|
441 |
+
pad_token_id=tokenizer.eos_token_id # Critical fix
|
442 |
)
|
443 |
+
|
444 |
+
decoded = tokenizer.decode(
|
445 |
+
outputs[0],
|
446 |
+
skip_special_tokens=True
|
447 |
+
).split("<|assistant|>")[-1].strip()
|
448 |
+
|
449 |
+
summaries.append(decoded)
|
450 |
|
451 |
+
combined = "\n\n".join(summaries)
|
452 |
final_prompt = f"""<|user|>
|
453 |
+
Combine these bullet points into a coherent 3-paragraph summary:
|
454 |
{combined}
|
455 |
<|assistant|>
|
456 |
+
Here is the comprehensive summary:"""
|
457 |
|
458 |
inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
|
459 |
outputs = model.generate(
|
460 |
**inputs,
|
461 |
+
max_new_tokens=400,
|
462 |
+
temperature=0.5,
|
463 |
+
top_p=0.9,
|
464 |
+
repetition_penalty=1.1,
|
465 |
+
do_sample=True,
|
466 |
+
pad_token_id=tokenizer.eos_token_id
|
467 |
)
|
468 |
+
|
469 |
+
return tokenizer.decode(
|
470 |
+
outputs[0],
|
471 |
+
skip_special_tokens=True
|
472 |
+
).split("Here is the comprehensive summary:")[-1].strip()
|
473 |
|
474 |
def build_faiss_index(texts):
|
475 |
+
embeddings = embedder.encode(
|
476 |
+
texts,
|
477 |
+
show_progress_bar=False,
|
478 |
+
batch_size=16,
|
479 |
+
convert_to_tensor=True
|
480 |
+
).cpu().numpy()
|
481 |
+
|
482 |
dimension = embeddings.shape[1]
|
483 |
index = faiss.IndexFlatIP(dimension)
|
484 |
faiss.normalize_L2(embeddings)
|
|
|
487 |
|
488 |
def generate_answer(query, context):
|
489 |
prompt = f"""<|user|>
|
490 |
+
Based on this context:
|
491 |
+
{context[:2000]}
|
492 |
+
|
493 |
+
Answer this question concisely: {query}
|
494 |
+
<|assistant|>
|
495 |
+
"""
|
496 |
+
|
497 |
+
inputs = tokenizer(
|
498 |
+
prompt,
|
499 |
+
return_tensors="pt",
|
500 |
+
max_length=1024,
|
501 |
+
truncation=True
|
502 |
+
).to(DEVICE)
|
503 |
|
|
|
504 |
outputs = model.generate(
|
505 |
**inputs,
|
506 |
+
max_new_tokens=300,
|
507 |
+
temperature=0.4,
|
508 |
+
top_p=0.95,
|
509 |
+
repetition_penalty=1.15,
|
510 |
+
do_sample=True,
|
511 |
+
pad_token_id=tokenizer.eos_token_id,
|
512 |
+
no_repeat_ngram_size=3 # Prevent repetition
|
513 |
)
|
514 |
+
|
515 |
+
return tokenizer.decode(
|
516 |
+
outputs[0],
|
517 |
+
skip_special_tokens=True
|
518 |
+
).split("<|assistant|>")[-1].strip()
|
519 |
|
520 |
# Streamlit UI
|
521 |
st.title("π AI-Powered Book Analysis System")
|
|
|
531 |
text = uploaded_file.read().decode()
|
532 |
|
533 |
if not text.strip():
|
534 |
+
st.error("Uploaded file is empty")
|
535 |
st.stop()
|
536 |
|
537 |
chunks = process_text(text)
|
|
|
552 |
try:
|
553 |
query_embed = embedder.encode([query])
|
554 |
faiss.normalize_L2(query_embed)
|
555 |
+
distances, indices = st.session_state.index.search(query_embed, k=3)
|
556 |
|
557 |
context = "\n".join([st.session_state.docs[i] for i in indices[0]])
|
558 |
answer = generate_answer(query, context)
|
559 |
|
560 |
st.subheader("Answer")
|
561 |
st.markdown(f"```\n{answer}\n```")
|
562 |
+
st.caption(f"Confidence score: {distances[0][0]:.2f}")
|
563 |
|
564 |
except Exception as e:
|
565 |
st.error(f"Query failed: {str(e)}")
|