Spaces:
Sleeping
Sleeping
File size: 1,322 Bytes
f3200e4 22fdee5 f3200e4 22fdee5 f3200e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import streamlit as st
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
from detectron2 import model_zoo
from PIL import Image
import numpy as np
from util import visualize, set_background
set_background('bg.png')
# set title
st.title('Brain MRI tumor detection')
# set header
st.header('Please upload an image')
# upload file
file = st.file_uploader('', type=['png', 'jpg', 'jpeg'])
# load model
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file('COCO-Detection/retinanet_R_101_FPN_3x.yaml'))
cfg.MODEL.WEIGHTS = 'model_0001999.pth'
cfg.MODEL.DEVICE = 'cpu'
predictor = DefaultPredictor(cfg)
# load image
if file:
image = Image.open(file).convert('RGB')
image_array = np.asarray(image)
# detect objects
outputs = predictor(image_array)
threshold = 0.5
# Display predictions
preds = outputs["instances"].pred_classes.tolist()
scores = outputs["instances"].scores.tolist()
bboxes = outputs["instances"].pred_boxes
bboxes_ = []
for j, bbox in enumerate(bboxes):
bbox = bbox.tolist()
score = scores[j]
pred = preds[j]
if score > threshold:
x1, y1, x2, y2 = [int(i) for i in bbox]
bboxes_.append([x1, y1, x2, y2])
# visualize
visualize(image, bboxes_) |