Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,12 @@ from langchain.vectorstores import Chroma
|
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
loader = TextLoader('India.txt')
|
@@ -22,10 +28,13 @@ embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
|
22 |
db = Chroma.from_documents(texts, embeddings)
|
23 |
db._collection.get(include=['embeddings'])
|
24 |
retriever = db.as_retriever(search_kwargs={"k": 1})
|
25 |
-
docs = retriever.get_relevant_documents("What is the capital of india?")
|
26 |
-
st.write("Answer")
|
27 |
-
document = docs[0]
|
28 |
-
page_content = document.page_content
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# st.text(file_content)
|
|
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
8 |
|
9 |
+
def get_text():
|
10 |
+
input_text = st.text_input("You: ", key="input")
|
11 |
+
return input_text
|
12 |
+
|
13 |
+
submit = st.button('Get Answer')
|
14 |
+
user_input = get_text()
|
15 |
|
16 |
|
17 |
loader = TextLoader('India.txt')
|
|
|
28 |
db = Chroma.from_documents(texts, embeddings)
|
29 |
db._collection.get(include=['embeddings'])
|
30 |
retriever = db.as_retriever(search_kwargs={"k": 1})
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
if user_input and submit:
|
33 |
+
|
34 |
+
docs = retriever.get_relevant_documents(user_input)
|
35 |
+
st.write("Answer")
|
36 |
+
document = docs[0]
|
37 |
+
page_content = document.page_content
|
38 |
+
|
39 |
+
st.write(page_content)
|
40 |
# st.text(file_content)
|