Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,11 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
class TextLoader:
|
4 |
def __init__(self, file):
|
@@ -14,7 +21,18 @@ if uploaded_file is not None:
|
|
14 |
f.write(uploaded_file.getbuffer())
|
15 |
|
16 |
text_loader = TextLoader(open("uploaded_file.txt","rb"))
|
17 |
-
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# st.write("File content:")
|
20 |
# st.text(file_content)
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain_community.document_loaders import TextLoader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
4 |
+
from langchain.embeddings import OpenAIEmbeddings
|
5 |
+
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
8 |
+
|
9 |
|
10 |
class TextLoader:
|
11 |
def __init__(self, file):
|
|
|
21 |
f.write(uploaded_file.getbuffer())
|
22 |
|
23 |
text_loader = TextLoader(open("uploaded_file.txt","rb"))
|
24 |
+
documents = text_loader.load()
|
25 |
+
|
26 |
+
text_splitter = CharacterTextSplitter (chunk_size=200,
|
27 |
+
chunk_overlap=0)
|
28 |
|
29 |
+
texts= text_splitter.split_documents(documents)
|
30 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
31 |
+
db = Chroma.from_documents(texts, embeddings)
|
32 |
+
db._collection.get(include=['embeddings'])
|
33 |
+
retriever = db.as_retriever(search_kwargs={"k": 1})
|
34 |
+
docs = retriever.get_relevant_documents("What is the capital of india?")
|
35 |
+
st.write("Answer")
|
36 |
+
st.text(docs)
|
37 |
# st.write("File content:")
|
38 |
# st.text(file_content)
|