TarunEnma commited on
Commit
589eae5
·
verified ·
1 Parent(s): 79e0ecb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -38
app.py CHANGED
@@ -5,41 +5,24 @@ from langchain.vectorstores import Chroma
5
  from langchain.chains import RetrievalQA
6
  from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
7
 
8
- # Define a simple Document class
9
- class Document:
10
- def __init__(self, page_content):
11
- self.page_content = page_content
12
-
13
- # Custom TextLoader class
14
- class TextLoader:
15
- def __init__(self, file):
16
- self.file = file
17
-
18
- def load(self):
19
- content = self.file.read().decode("utf-8")
20
- # Return a list of Document objects
21
- return [Document(content)]
22
-
23
- # Streamlit interface
24
- st.title("Please upload files that are txt format")
25
- uploaded_file = st.file_uploader("Choose a text file", type=["txt"])
26
-
27
- if uploaded_file is not None:
28
- # Use the uploaded file directly
29
- text_loader = TextLoader(uploaded_file)
30
- documents = text_loader.load()
31
-
32
- text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=0)
33
- texts = text_splitter.split_documents(documents)
34
-
35
- st.write(texts)
36
-
37
- # embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
38
- # db = Chroma.from_documents(texts, embeddings)
39
- # db._collection.get(include=['embeddings'])
40
- # retriever = db.as_retriever(search_kwargs={"k": 1})
41
- # docs = retriever.get_relevant_documents("What is the capital of india?")
42
- # st.write("Answer")
43
- # st.text(docs)
44
- # # st.write("File content:")
45
- # # st.text(file_content)
 
5
  from langchain.chains import RetrievalQA
6
  from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
7
 
8
+
9
+
10
+ loader = TextLoader('India.txt')
11
+ documents =loader.load()
12
+
13
+ text_splitter = CharacterTextSplitter (chunk_size=200,
14
+ chunk_overlap=0)
15
+
16
+ texts= text_splitter.split_documents(documents)
17
+
18
+
19
+
20
+ embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
21
+ db = Chroma.from_documents(texts, embeddings)
22
+ db._collection.get(include=['embeddings'])
23
+ retriever = db.as_retriever(search_kwargs={"k": 1})
24
+ docs = retriever.get_relevant_documents("What is the capital of india?")
25
+ st.write("Answer")
26
+ st.text(docs)
27
+ # st.write("File content:")
28
+ # st.text(file_content)