Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,87 +1,43 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# from langchain.text_splitter import CharacterTextSplitter
|
3 |
-
# from langchain_community.document_loaders import TextLoader
|
4 |
-
# from langchain.embeddings import OpenAIEmbeddings
|
5 |
-
# from langchain.vectorstores import Chroma
|
6 |
-
# from langchain.chains import RetrievalQA
|
7 |
-
# from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
8 |
-
|
9 |
-
# def get_text():
|
10 |
-
# input_text = st.text_input("You: ", key="input")
|
11 |
-
# return input_text
|
12 |
-
|
13 |
-
|
14 |
-
# user_input = get_text()
|
15 |
-
# submit = st.button('Get Answer')
|
16 |
-
|
17 |
-
|
18 |
-
# loader = TextLoader('India.txt')
|
19 |
-
# documents =loader.load()
|
20 |
-
|
21 |
-
# text_splitter = CharacterTextSplitter (chunk_size=200,
|
22 |
-
# chunk_overlap=0)
|
23 |
-
|
24 |
-
# texts= text_splitter.split_documents(documents)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
29 |
-
# db = Chroma.from_documents(texts, embeddings)
|
30 |
-
# db._collection.get(include=['embeddings'])
|
31 |
-
# retriever = db.as_retriever(search_kwargs={"k": 1})
|
32 |
-
|
33 |
-
# if user_input and submit:
|
34 |
-
|
35 |
-
# docs = retriever.get_relevant_documents(user_input)
|
36 |
-
# st.write("Answer")
|
37 |
-
# document = docs[0]
|
38 |
-
# page_content = document.page_content
|
39 |
-
|
40 |
-
# st.write(page_content)
|
41 |
-
# # st.text(file_content)
|
42 |
-
|
43 |
import streamlit as st
|
44 |
from langchain.text_splitter import CharacterTextSplitter
|
45 |
from langchain_community.document_loaders import TextLoader
|
|
|
46 |
from langchain.vectorstores import Chroma
|
47 |
-
from langchain.
|
48 |
-
|
49 |
-
|
50 |
-
class CharLevelEmbeddings(Embeddings):
|
51 |
-
def embed_documents(self, texts):
|
52 |
-
return [self.embed_text(text) for text in texts]
|
53 |
-
|
54 |
-
def embed_text(self, text):
|
55 |
-
# Example: Simple character-level embedding by converting characters to their ASCII values.
|
56 |
-
# In practice, use a more sophisticated method or pretrained model.
|
57 |
-
return np.array([ord(char) for char in text])
|
58 |
-
|
59 |
-
def embed_query(self, text):
|
60 |
-
return self.embed_text(text)
|
61 |
|
62 |
def get_text():
|
63 |
input_text = st.text_input("You: ", key="input")
|
64 |
return input_text
|
65 |
|
|
|
66 |
user_input = get_text()
|
67 |
submit = st.button('Get Answer')
|
68 |
|
|
|
69 |
loader = TextLoader('India.txt')
|
70 |
-
documents =
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=0)
|
73 |
-
texts = text_splitter.split_documents(documents)
|
74 |
|
75 |
-
|
|
|
76 |
db = Chroma.from_documents(texts, embeddings)
|
77 |
db._collection.get(include=['embeddings'])
|
78 |
retriever = db.as_retriever(search_kwargs={"k": 1})
|
79 |
|
80 |
if user_input and submit:
|
|
|
81 |
docs = retriever.get_relevant_documents(user_input)
|
82 |
st.write("Answer")
|
83 |
document = docs[0]
|
84 |
page_content = document.page_content
|
85 |
|
86 |
st.write(page_content)
|
|
|
|
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from langchain.text_splitter import CharacterTextSplitter
|
3 |
from langchain_community.document_loaders import TextLoader
|
4 |
+
from langchain.embeddings import OpenAIEmbeddings
|
5 |
from langchain.vectorstores import Chroma
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def get_text():
|
10 |
input_text = st.text_input("You: ", key="input")
|
11 |
return input_text
|
12 |
|
13 |
+
|
14 |
user_input = get_text()
|
15 |
submit = st.button('Get Answer')
|
16 |
|
17 |
+
|
18 |
loader = TextLoader('India.txt')
|
19 |
+
documents =loader.load()
|
20 |
+
|
21 |
+
text_splitter = CharacterTextSplitter (chunk_size=200,
|
22 |
+
chunk_overlap=0)
|
23 |
+
|
24 |
+
texts= text_splitter.split_documents(documents)
|
25 |
|
|
|
|
|
26 |
|
27 |
+
|
28 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
29 |
db = Chroma.from_documents(texts, embeddings)
|
30 |
db._collection.get(include=['embeddings'])
|
31 |
retriever = db.as_retriever(search_kwargs={"k": 1})
|
32 |
|
33 |
if user_input and submit:
|
34 |
+
|
35 |
docs = retriever.get_relevant_documents(user_input)
|
36 |
st.write("Answer")
|
37 |
document = docs[0]
|
38 |
page_content = document.page_content
|
39 |
|
40 |
st.write(page_content)
|
41 |
+
# st.text(file_content)
|
42 |
+
|
43 |
|