import streamlit as st from langchain.text_splitter import CharacterTextSplitter from langchain_community.document_loaders import TextLoader from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings loader = TextLoader('India.txt') documents =loader.load() text_splitter = CharacterTextSplitter (chunk_size=200, chunk_overlap=0) texts= text_splitter.split_documents(documents) embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") db = Chroma.from_documents(texts, embeddings) db._collection.get(include=['embeddings']) retriever = db.as_retriever(search_kwargs={"k": 1}) docs = retriever.get_relevant_documents("What is the capital of india?") st.write("Answer") st.text(docs) # st.write("File content:") # st.text(file_content)