from transformers import BartForConditionalGeneration, BartTokenizer, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM from transformers.utils import logging import gradio as gr #define the logger instance logger = logging.get_logger("transformers") #other text-to-text model chatbot = pipeline("text2text-generation", model="google/flan-t5-small") #model= "gpt2" def respond(prompt): result = chatbot(prompt, max_length=50, num_return_sequences=1) return result[0]['generated_text'] interface = gr.Interface(fn=respond, inputs="text", outputs="text") interface.launch() #load the model model_name = "google/flan-t5-small" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # # Charger le modèle BART et le tokenizer # model_name = "facebook/bart-large-cnn" # tokenizer = BartTokenizer.from_pretrained(model_name) # model = BartForConditionalGeneration.from_pretrained(model_name) # # Fonction pour générer du texte # def generate_text(prompt): # inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) # summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) # return tokenizer.decode(summary_ids[0], skip_special_tokens=True) # #for training the model after the data is collected # #model.save_pretrained("model") # #tokenizer.save_pretrained("model") # #for the app functions # def clear_save_textbox(message): # return " ", message # def show_input_text(message,history:list[tuple[str,str]]): # history.append((message,"")) # story = generate_text(message) # history[-1] = (message,story) # return history # def delete_previous_text(history:list[tuple[str,str]]): # try: # message, _ = history.pop() # except IndexError: # message = " " # return history, message # # Créer une interface de saisie avec Gradio # interface = gr.Interface(fn=generate_text, inputs="text", outputs="text",title="TeLLMyStory",description="Enter your story idea and the model will generate the story based on it.") # with gr.Blocks() as demo: # gr.Markdown("TeLLMyStory chatbot") # #input_text = blocks.text(name="input_text", label="Enter your story idea here", default="Once upon a time, there was") # with gr.Row(): # input_text = gr.Textbox(label="Enter your story idea here") # #clear_button = gr.Button("Clear",variant="secondary") # #clear_button.click(fn=clear_save_textbox, inputs=[input_text]) # #retry_button = gr.Button("Retry", fn=delete_previous_text, inputs=[input_text],variants=["secondary"]) # with gr.Row(): # gr.Markdown("History of your story ideas") # gen_story = gr.Textbox(label="History") # #send_button = gr.Button(name="send_button", label="Send", fn=show_input_text, inputs=[input_text],outputs=[gen_story],variants=["primary"]) # # Lancer l'interface # interface.launch()