from transformers import BartForConditionalGeneration, BartTokenizer import gradio as gr # Charger le modèle BART et le tokenizer model_name = "facebook/bart-large-cnn" tokenizer = BartTokenizer.from_pretrained(model_name) model = BartForConditionalGeneration.from_pretrained(model_name) # Fonction pour générer du texte def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) return tokenizer.decode(summary_ids[0], skip_special_tokens=True) #for training the model after the data is collected #model.save_pretrained("model") #tokenizer.save_pretrained("model") # Créer une interface de saisie avec Gradio interface = gr.Interface(fn=generate_text, inputs="text", outputs="text",title="TeLLMyStory",description="Enter your story idea and the model will generate the story based on it.") #Lancer l'interface interface.launch(share=True)