TeacherPuffy's picture
Update app.py
3cf0646 verified
import gradio as gr
from datasets import load_dataset
import tempfile
import re
# List of common titles that end with a period
TITLES = {"Mr.", "Mrs.", "Ms.", "Dr.", "Prof.", "Rev.", "Sr.", "Jr."}
def is_latin(text):
"""Check if the text contains only Latin characters."""
# Regex to match non-Latin characters
return not re.search(r'[^\x00-\x7F]', text)
def clean_text(text):
"""Remove non-Latin text and ** from the text."""
# Remove **
text = re.sub(r'\*\*', '', text)
# Split text into sentences and filter out non-Latin sentences
sentences = re.split(r'(?<=[.!?])\s+', text)
cleaned_sentences = [s for s in sentences if is_latin(s)]
return ' '.join(cleaned_sentences)
def process_text(text):
"""Insert a newline after periods, except for titles and ."
Also replace '### Simplified Version' with 'Chapter N' where N increments."""
# Split text into words
words = text.split()
processed_text = ""
chapter_counter = 3 # Initialize chapter counter
for i, word in enumerate(words):
# Check if the word is a title (e.g., Mr., Mrs.)
if word in TITLES:
processed_text += word + " "
# Check if the word ends with a period and is not followed by a quote
elif word.endswith('.') and not word.endswith('."'):
processed_text += word + "\n"
# Replace '### Simplified Version' with 'Chapter N'
elif word == "###" and i + 2 < len(words) and words[i + 1] == "Simplified" and words[i + 2] == "Version":
processed_text += f"Chapter {chapter_counter} "
chapter_counter += 1 # Increment chapter counter
words[i + 1] = "" # Skip the next two words
words[i + 2] = ""
else:
processed_text += word + " "
# Remove trailing spaces and newlines
return processed_text.strip()
def combine_dataset_texts(dataset_name, split, text_column):
try:
# Load the dataset from Hugging Face Hub
dataset = load_dataset(dataset_name, split=split)
# Verify the text column exists
if text_column not in dataset.column_names:
raise gr.Error(f"Column '{text_column}' not found in dataset")
# Combine all texts into a single string without separating datapoints
combined_text = " ".join([example[text_column] for example in dataset])
# Clean the text: remove non-Latin and **
cleaned_text = clean_text(combined_text)
# Process the text: insert newlines after periods, except for titles and ."
# Also replace '### Simplified Version' with 'Chapter N'
processed_text = process_text(cleaned_text)
# Create a temporary file
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as f:
f.write(processed_text)
return f.name
except Exception as e:
raise gr.Error(f"Error processing dataset: {str(e)}")
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Hugging Face Dataset Text Combiner")
gr.Markdown("Combine all text files from a Hugging Face dataset into a single file")
with gr.Row():
dataset_input = gr.Textbox(label="Dataset Name",
placeholder="username/dataset-name")
split_input = gr.Textbox(label="Split", value="train")
column_input = gr.Textbox(label="Text Column", value="text")
submit_btn = gr.Button("Combine Texts")
with gr.Row():
output_file = gr.File(label="Combined Text File")
error_out = gr.Textbox(label="Error Output", visible=False)
submit_btn.click(
fn=combine_dataset_texts,
inputs=[dataset_input, split_input, column_input],
outputs=output_file,
api_name="combine_texts"
)
if __name__ == "__main__":
demo.launch()