File size: 676 Bytes
a95b4f8 db9a501 a95b4f8 64843fe a95b4f8 7e193fe db9a501 a95b4f8 7e193fe a95b4f8 db9a501 7e193fe db9a501 a95b4f8 819c345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from transformers import pipeline
import numpy as np
asr_model = "distil-whisper/distil-medium.en"
transcriber = pipeline("automatic-speech-recognition", model=asr_model)
def transcribe(stream, new_chunk):
sr, y = new_chunk
y = y.astype(np.float32)
y /= np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"]
demo = gr.Interface(
transcribe,
["state", gr.Audio(sources=["microphone"], streaming=True)],
["state", "text"],
live=True,
)
if __name__ == "__main__":
demo.launch()
|