File size: 466 Bytes
a95b4f8 c0fb8f9 a95b4f8 cb9c21a a95b4f8 cb9c21a a95b4f8 86349f0 a95b4f8 86349f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
import gradio as gr
from transformers import pipeline
import numpy as np
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
def transcribe(audio):
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
return transcriber({"sampling_rate": sr, "raw": y})["text"]
demo = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources="upload"),
outputs=gr.outputs.Textbox(),
)
demo.launch(debug=True)
|