Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,69 @@
|
|
|
|
1 |
from transformers import pipeline
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
def transcribe_speech(filepath):
|
7 |
-
output = pipe(
|
8 |
-
filepath,
|
9 |
-
max_new_tokens=256,
|
10 |
-
generate_kwargs={
|
11 |
-
"task": "transcribe",
|
12 |
-
"language": "sinhalese",
|
13 |
-
}, # update with the language you've fine-tuned on
|
14 |
-
chunk_length_s=30,
|
15 |
-
batch_size=8,
|
16 |
-
)
|
17 |
-
return output["text"]
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
[
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
35 |
demo.launch(debug=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
import numpy as np
|
4 |
+
import time
|
5 |
|
6 |
+
# Initialize the pipelines
|
7 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en")
|
8 |
+
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
candidate_labels = ["dim the light", "turn on light fully", "turn off light fully", "raise the light", "not about lighting"]
|
11 |
+
last_update_time = time.time() - 5 # Initialize with a value to ensure immediate first update
|
12 |
|
13 |
+
# Buffer to hold the last updated values
|
14 |
+
last_transcription = ""
|
15 |
+
last_classification = ""
|
16 |
|
17 |
+
def transcribe_and_classify(stream, new_chunk):
|
18 |
+
global last_update_time, last_transcription, last_classification
|
19 |
+
sr, y = new_chunk
|
20 |
+
y = y.astype(np.float32)
|
21 |
+
y /= np.max(np.abs(y))
|
22 |
+
|
23 |
+
# Concatenate new audio chunk to the stream
|
24 |
+
if stream is not None:
|
25 |
+
stream = np.concatenate([stream, y])
|
26 |
+
else:
|
27 |
+
stream = y
|
28 |
|
29 |
+
# Keep only the last 10 seconds of audio
|
30 |
+
num_samples_last_10_seconds = 5 * sr
|
31 |
+
if len(stream) > num_samples_last_10_seconds:
|
32 |
+
stream = stream[-num_samples_last_10_seconds:]
|
33 |
+
|
34 |
+
current_time = time.time()
|
35 |
+
|
36 |
+
# Update every 5 seconds
|
37 |
+
if current_time - last_update_time >= 5:
|
38 |
+
last_update_time = current_time
|
39 |
+
# Transcribe the last 10 seconds of audio
|
40 |
+
transcription = transcriber({"sampling_rate": sr, "task": "transcribe", "language": "english", "raw": stream})["text"]
|
41 |
+
last_transcription = transcription # Update the buffer
|
42 |
+
|
43 |
+
# Classify the transcribed text
|
44 |
+
if transcription.strip():
|
45 |
+
output = classifier(transcription, candidate_labels, multi_label=False)
|
46 |
+
top_label = output['labels'][0]
|
47 |
+
top_score = output['scores'][0]
|
48 |
+
last_classification = f"{top_label.upper()}, score: {top_score:.2f}"
|
49 |
+
|
50 |
+
# Return the last updated transcription and classification
|
51 |
+
return stream, last_transcription, last_classification
|
52 |
+
|
53 |
+
# Define the Gradio interface
|
54 |
+
demo = gr.Interface(
|
55 |
+
fn=transcribe_and_classify,
|
56 |
+
inputs=[
|
57 |
+
"state",
|
58 |
+
gr.Audio(sources=["microphone"], streaming=True)
|
59 |
+
],
|
60 |
+
outputs=[
|
61 |
+
"state",
|
62 |
+
"text",
|
63 |
+
"text"
|
64 |
+
],
|
65 |
+
live=True
|
66 |
+
)
|
67 |
|
68 |
+
# Launch the demo
|
69 |
demo.launch(debug=True)
|