Teapack1 commited on
Commit
2edd588
1 Parent(s): 25a1651

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -29
app.py CHANGED
@@ -1,37 +1,34 @@
1
- import gradio as gr
2
  from transformers import pipeline
3
- import numpy as np
4
-
5
- asr_model = "distil-whisper/distil-medium.en"
6
-
7
- asr_pipe = pipeline("automatic-speech-recognition", model=asr_model)
8
 
9
- def transcribe(stream, new_chunk):
10
- sr, y = new_chunk
11
- y = y.astype(np.float32)
12
- y /= np.max(np.abs(y))
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- if stream is not None:
15
- stream = np.concatenate([stream, y])
16
- else:
17
- stream = y
18
- return stream, asr_pipe({"sampling_rate": sr, "raw": stream})["text"]
19
 
20
  demo = gr.Blocks()
21
 
22
-
23
- mic = gr.Interface(
24
- fn = transcribe,
25
- inputs = [
26
- "state", gr.Audio(sources=["microphone"], streaming=True)],
27
- outputs = ["state", "text"],
28
- theme="huggingface",
29
- title="Whisper & BERT demo - Intent Classification",
30
- description=(
31
- "Transcribe audio inputs with Whisper ASR model and detect intention from the text. Use BERT NLP model to classify the intention as one of the commands to command a light."
32
- ),
33
- live=True,
34
  )
35
 
36
- if __name__ == "__main__":
37
- demo.launch()
 
 
 
 
 
 
1
  from transformers import pipeline
 
 
 
 
 
2
 
3
+ model_id = "sanchit-gandhi/whisper-small-dv" # update with your model id
4
+ pipe = pipeline("automatic-speech-recognition", model=model_id)
5
+
6
+ def transcribe_speech(filepath):
7
+ output = pipe(
8
+ filepath,
9
+ max_new_tokens=256,
10
+ generate_kwargs={
11
+ "task": "transcribe",
12
+ "language": "sinhalese",
13
+ }, # update with the language you've fine-tuned on
14
+ chunk_length_s=30,
15
+ batch_size=8,
16
+ )
17
+ return output["text"]
18
 
19
+ import gradio as gr
 
 
 
 
20
 
21
  demo = gr.Blocks()
22
 
23
+ mic_transcribe = gr.Interface(
24
+ fn=transcribe_speech,
25
+ inputs=gr.Audio(sources="microphone", type="filepath"),
26
+ outputs=gr.outputs.Textbox(),
 
 
 
 
 
 
 
 
27
  )
28
 
29
+ with demo:
30
+ gr.TabbedInterface(
31
+ [mic_transcribe],
32
+ ["Transcribe Microphone"],
33
+
34
+ demo.launch(debug=True)