Teapack1 commited on
Commit
9fe1f6c
1 Parent(s): 7463397

server run utility

Browse files
Files changed (3) hide show
  1. app.py +15 -128
  2. requirements.txt +3 -2
  3. server.py +131 -0
app.py CHANGED
@@ -1,133 +1,20 @@
1
- from fastapi import FastAPI, WebSocket, Request, WebSocketDisconnect
2
- from fastapi.staticfiles import StaticFiles
3
- from fastapi.responses import HTMLResponse
4
- from fastapi.templating import Jinja2Templates
5
  import os
6
- import gradio
 
7
 
8
- import numpy as np
9
- from transformers import pipeline
10
- import torch
11
- from transformers.pipelines.audio_utils import ffmpeg_microphone_live
12
-
13
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
14
-
15
- classifier = pipeline(
16
- "audio-classification", model="MIT/ast-finetuned-speech-commands-v2", device=device
17
- )
18
- intent_class_pipe = pipeline(
19
- "audio-classification", model="anton-l/xtreme_s_xlsr_minds14", device=device
20
- )
21
-
22
-
23
- async def launch_fn(
24
- wake_word="marvin",
25
- prob_threshold=0.5,
26
- chunk_length_s=2.0,
27
- stream_chunk_s=0.25,
28
- debug=False,
29
- ):
30
- if wake_word not in classifier.model.config.label2id.keys():
31
- raise ValueError(
32
- f"Wake word {wake_word} not in set of valid class labels, pick a wake word in the set {classifier.model.config.label2id.keys()}."
33
- )
34
-
35
- sampling_rate = classifier.feature_extractor.sampling_rate
36
-
37
- mic = ffmpeg_microphone_live(
38
- sampling_rate=sampling_rate,
39
- chunk_length_s=chunk_length_s,
40
- stream_chunk_s=stream_chunk_s,
41
- )
42
-
43
- print("Listening for wake word...")
44
- for prediction in classifier(mic):
45
- prediction = prediction[0]
46
- if debug:
47
- print(prediction)
48
- if prediction["label"] == wake_word:
49
- if prediction["score"] > prob_threshold:
50
- return True
51
-
52
-
53
- async def listen(websocket, chunk_length_s=2.0, stream_chunk_s=2.0):
54
- sampling_rate = intent_class_pipe.feature_extractor.sampling_rate
55
-
56
- mic = ffmpeg_microphone_live(
57
- sampling_rate=sampling_rate,
58
- chunk_length_s=chunk_length_s,
59
- stream_chunk_s=stream_chunk_s,
60
- )
61
- audio_buffer = []
62
 
63
- print("Listening")
64
- for i in range(4):
65
- audio_chunk = next(mic)
66
- audio_buffer.append(audio_chunk["raw"])
67
-
68
- prediction = intent_class_pipe(audio_chunk["raw"])
69
- await websocket.send_text(f"chunk: {prediction[0]['label']} | {i+1} / 4")
70
-
71
- if await is_silence(audio_chunk["raw"], threshold=0.7):
72
- print("Silence detected, processing audio.")
73
- break
74
-
75
- combined_audio = np.concatenate(audio_buffer)
76
- prediction = intent_class_pipe(combined_audio)
77
- top_3_predictions = prediction[:3]
78
- formatted_predictions = "\n".join([f"{pred['label']}: {pred['score'] * 100:.2f}%" for pred in top_3_predictions])
79
- await websocket.send_text(f"classes: \n{formatted_predictions}")
80
- return
81
-
82
 
83
- async def is_silence(audio_chunk, threshold):
84
- silence = intent_class_pipe(audio_chunk)
85
- if silence[0]["label"] == "silence" and silence[0]["score"] > threshold:
86
- return True
87
  else:
88
- return False
89
-
90
-
91
- # Initialize FastAPI app
92
- app = FastAPI()
93
-
94
- # Set up static file directory
95
- app.mount("/static", StaticFiles(directory="static"), name="static")
96
-
97
- # Jinja2 Template for HTML rendering
98
- templates = Jinja2Templates(directory="templates")
99
-
100
-
101
- @app.get("/", response_class=HTMLResponse)
102
- async def get_home(request: Request):
103
- return templates.TemplateResponse("index.html", {"request": request})
104
-
105
-
106
- @app.websocket("/ws")
107
- async def websocket_endpoint(websocket: WebSocket):
108
- await websocket.accept()
109
- try:
110
- process_active = False # Flag to track the state of the process
111
-
112
- while True:
113
- message = await websocket.receive_text()
114
-
115
- if message == "start" and not process_active:
116
- process_active = True
117
- await websocket.send_text("Listening for wake word...")
118
- wake_word_detected = await launch_fn(debug=True)
119
- if wake_word_detected:
120
- await websocket.send_text("Wake word detected. Listening for your query...")
121
- await listen(websocket)
122
- process_active = False # Reset the process flag
123
-
124
- elif message == "stop":
125
- if process_active:
126
- # Implement logic to stop the ongoing process
127
- # This might involve setting a flag that your launch_fn and listen functions check
128
- process_active = False
129
- await websocket.send_text("Process stopped. Ready to restart.")
130
- break # Or keep the loop running if you want to allow restarting without reconnecting
131
-
132
- except WebSocketDisconnect:
133
- print("Client disconnected.")
 
1
+ import json
 
 
 
2
  import os
3
+ import requests
4
+ import socket
5
 
6
+ def start_server():
7
+ os.system("uvicorn server:app --port 8080 --host 0.0.0.0 --workers 2")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ def is_port_in_use(port):
10
+ with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
11
+ return s.connect_ex(('0.0.0.0', port)) == 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ def main():
14
+ if is_port_in_use(8080):
15
+ print("Port 8080 is already in use. Please kill the process and try again.")
 
16
  else:
17
+ start_server()
18
+
19
+ if __name__ == "__main__":
20
+ main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -3,5 +3,6 @@ transformers
3
  torchaudio
4
  numpy
5
  fastapi
6
- uvicorn[standard]
7
- gradio
 
 
3
  torchaudio
4
  numpy
5
  fastapi
6
+ uvicorn
7
+ gradio
8
+ requests
server.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, WebSocket, Request, WebSocketDisconnect
2
+ from fastapi.staticfiles import StaticFiles
3
+ from fastapi.responses import HTMLResponse
4
+ from fastapi.templating import Jinja2Templates
5
+
6
+ import numpy as np
7
+ from transformers import pipeline
8
+ import torch
9
+ from transformers.pipelines.audio_utils import ffmpeg_microphone_live
10
+
11
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
+
13
+ classifier = pipeline(
14
+ "audio-classification", model="MIT/ast-finetuned-speech-commands-v2", device=device
15
+ )
16
+ intent_class_pipe = pipeline(
17
+ "audio-classification", model="anton-l/xtreme_s_xlsr_minds14", device=device
18
+ )
19
+
20
+
21
+ async def launch_fn(
22
+ wake_word="marvin",
23
+ prob_threshold=0.5,
24
+ chunk_length_s=2.0,
25
+ stream_chunk_s=0.25,
26
+ debug=False,
27
+ ):
28
+ if wake_word not in classifier.model.config.label2id.keys():
29
+ raise ValueError(
30
+ f"Wake word {wake_word} not in set of valid class labels, pick a wake word in the set {classifier.model.config.label2id.keys()}."
31
+ )
32
+
33
+ sampling_rate = classifier.feature_extractor.sampling_rate
34
+
35
+ mic = ffmpeg_microphone_live(
36
+ sampling_rate=sampling_rate,
37
+ chunk_length_s=chunk_length_s,
38
+ stream_chunk_s=stream_chunk_s,
39
+ )
40
+
41
+ print("Listening for wake word...")
42
+ for prediction in classifier(mic):
43
+ prediction = prediction[0]
44
+ if debug:
45
+ print(prediction)
46
+ if prediction["label"] == wake_word:
47
+ if prediction["score"] > prob_threshold:
48
+ return True
49
+
50
+
51
+ async def listen(websocket, chunk_length_s=2.0, stream_chunk_s=2.0):
52
+ sampling_rate = intent_class_pipe.feature_extractor.sampling_rate
53
+
54
+ mic = ffmpeg_microphone_live(
55
+ sampling_rate=sampling_rate,
56
+ chunk_length_s=chunk_length_s,
57
+ stream_chunk_s=stream_chunk_s,
58
+ )
59
+ audio_buffer = []
60
+
61
+ print("Listening")
62
+ for i in range(4):
63
+ audio_chunk = next(mic)
64
+ audio_buffer.append(audio_chunk["raw"])
65
+
66
+ prediction = intent_class_pipe(audio_chunk["raw"])
67
+ await websocket.send_text(f"chunk: {prediction[0]['label']} | {i+1} / 4")
68
+
69
+ if await is_silence(audio_chunk["raw"], threshold=0.7):
70
+ print("Silence detected, processing audio.")
71
+ break
72
+
73
+ combined_audio = np.concatenate(audio_buffer)
74
+ prediction = intent_class_pipe(combined_audio)
75
+ top_3_predictions = prediction[:3]
76
+ formatted_predictions = "\n".join([f"{pred['label']}: {pred['score'] * 100:.2f}%" for pred in top_3_predictions])
77
+ await websocket.send_text(f"classes: \n{formatted_predictions}")
78
+ return
79
+
80
+
81
+ async def is_silence(audio_chunk, threshold):
82
+ silence = intent_class_pipe(audio_chunk)
83
+ if silence[0]["label"] == "silence" and silence[0]["score"] > threshold:
84
+ return True
85
+ else:
86
+ return False
87
+
88
+
89
+ # Initialize FastAPI app
90
+ app = FastAPI()
91
+
92
+ # Set up static file directory
93
+ app.mount("/static", StaticFiles(directory="static"), name="static")
94
+
95
+ # Jinja2 Template for HTML rendering
96
+ templates = Jinja2Templates(directory="templates")
97
+
98
+
99
+ @app.get("/", response_class=HTMLResponse)
100
+ async def get_home(request: Request):
101
+ return templates.TemplateResponse("index.html", {"request": request})
102
+
103
+
104
+ @app.websocket("/ws")
105
+ async def websocket_endpoint(websocket: WebSocket):
106
+ await websocket.accept()
107
+ try:
108
+ process_active = False # Flag to track the state of the process
109
+
110
+ while True:
111
+ message = await websocket.receive_text()
112
+
113
+ if message == "start" and not process_active:
114
+ process_active = True
115
+ await websocket.send_text("Listening for wake word...")
116
+ wake_word_detected = await launch_fn(debug=True)
117
+ if wake_word_detected:
118
+ await websocket.send_text("Wake word detected. Listening for your query...")
119
+ await listen(websocket)
120
+ process_active = False # Reset the process flag
121
+
122
+ elif message == "stop":
123
+ if process_active:
124
+ # Implement logic to stop the ongoing process
125
+ # This might involve setting a flag that your launch_fn and listen functions check
126
+ process_active = False
127
+ await websocket.send_text("Process stopped. Ready to restart.")
128
+ break # Or keep the loop running if you want to allow restarting without reconnecting
129
+
130
+ except WebSocketDisconnect:
131
+ print("Client disconnected.")