import gradio as gr from transformers import pipeline import numpy as np asr_model = "distil-whisper/distil-medium.en" asr_pipe = pipeline("automatic-speech-recognition", model=asr_model) def transcribe(stream, new_chunk): sr, y = new_chunk y = y.astype(np.float32) y /= np.max(np.abs(y)) if stream is not None: stream = np.concatenate([stream, y]) else: stream = y return stream, asr_pipe({"sampling_rate": sr, "raw": stream})["text"] demo = gr.Blocks() mic = gr.Interface( fn = transcribe, inputs = [ "state", gr.Audio(sources=["microphone"], streaming=True)], outputs = ["state", "text"], layout="horizontal", theme="huggingface", title="Whisper & BERT demo - Intent Classification", description=( "Transcribe audio inputs with Whisper ASR model and detect intention from the text. Use BERT NLP model to classify the intention "as one of the commands to command a light." ), allow_flagging="never", live=True, ) if __name__ == "__main__": demo.launch()