File size: 990 Bytes
99f6b82
a54b6d7
 
 
3b3366c
6dc6ca0
 
 
 
 
 
 
 
 
 
 
 
 
99f6b82
3b3366c
99f6b82
 
 
 
 
b44551d
99f6b82
 
 
 
b44551d
99f6b82
 
 
 
 
 
 
b44551d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr

model_id = "sanchit-gandhi/whisper-small-dv"  # update with your model id
pipe = pipeline("automatic-speech-recognition", model=model_id)

def transcribe_speech(filepath):
    output = pipe(
        filepath,
        max_new_tokens=256,
        generate_kwargs={
            "task": "transcribe",
            "language": "sinhalese",
        },  # update with the language you've fine-tuned on
        chunk_length_s=30,
        batch_size=8,
    )
    return output["text"]

demo = gr.Blocks()

mic_transcribe = gr.Interface(
    fn=transcribe_speech,
    inputs=gr.Audio(sources="microphone", type="filepath"),
    outputs=gr.outputs.Textbox(),
)

file_transcribe = gr.Interface(
    fn=transcribe_speech,
    inputs=gr.Audio(sources="upload", type="filepath"),
    outputs=gr.outputs.Textbox(),
)

with demo:
    gr.TabbedInterface(
        [mic_transcribe, file_transcribe],
        ["Transcribe Microphone", "Transcribe Audio File"],
    )

demo.launch(debug=True)