File size: 980 Bytes
9422011
2e35d02
a54b6d7
0b472d5
9422011
2e35d02
3b3366c
9422011
 
 
 
2e35d02
a7a91bd
 
 
2e35d02
 
 
 
3b3366c
b44551d
8a9e88a
 
34d3b12
0b472d5
 
8a9e88a
 
 
b44551d
8a9e88a
 
 
 
34d3b12
8a9e88a
0b472d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from transformers import pipeline
import gradio as gr


model_id = "Teapack1/model_KWS"  # update with your model id
pipe = pipeline("audio-classification", model=model_id)


title = "Keyword Spotting Wav2Vec2"
description = "Gradio demo for finetuned Wav2Vec2 model on a custom dataset to perform keyword spotting task. Classes are scene 1, scene 2, scene 3, yes, no and stop."

def classify_audio(filepath):
    preds = pipe(filepath,
                 chunk_length_s=1,
                 )
    outputs = {}
    for p in preds:
        outputs[p["label"]] = p["score"]
    return outputs


demo = gr.Blocks()

mic_classify = gr.Interface(
    title = title,
    description=description,
    fn=classify_audio,
    inputs=gr.Audio(sources="microphone", type="filepath"),
    outputs=gr.outputs.Label()
)


with demo:
    gr.TabbedInterface(
        [mic_classify, file_classify],
        ["Transcribe Microphone", "Transcribe Audio File"],
    )
demo.launch(debug=True, share=True)