Teapack1's picture
Update app.py
2e35d02
raw
history blame
666 Bytes
from transformers import pipeline
import gradio as gr
model_id = "Teapack1/model_KWS" # update with your model id
pipe = pipeline("audio-classification", model=model_id)
title = "Keyword Spotting Wav2Vec2"
description = "Gradio demo for finetuned Wav2Vec2 model on a custom dataset to perform keyword spotting task. Classes are scene 1, scene 2, scene 3, yes, no and stop."
def classify_audio(filepath):
preds = pipe(filepath)
outputs = {}
for p in preds:
outputs[p["label"]] = p["score"]
return outputs
demo = gr.Interface(
fn=classify_audio, inputs=gr.Audio(type="filepath"), outputs=gr.outputs.Label()
)
demo.launch(debug=True)