Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
model_id = "Teapack1/model_KWS" # update with your model id | |
pipe = pipeline("audio-classification", model=model_id) | |
title = "Keyword Spotting Wav2Vec2" | |
description = "Gradio demo for finetuned Wav2Vec2 model on a custom dataset to perform keyword spotting task. Classes are scene 1, scene 2, scene 3, yes, no and stop." | |
demo = gr.Blocks() | |
def classify_audio(audio): | |
preds = pipe(audio) | |
outputs = {} | |
for p in preds: | |
outputs[p["label"]] = p["score"] | |
return outputs | |
mic_classify = gr.Interface( | |
fn=classify_audio, | |
inputs=gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio"), | |
outputs=gr.outputs.Label(), | |
title=title, | |
theme="huggingface", | |
description=description, | |
examples=[ | |
["./scene3_329.wav"], | |
["./scene1_200.wav"], | |
["./light_422.wav"], | |
["./ambient_476.wav"], | |
], | |
cache_examples=True, | |
) | |
file_classify = gr.Interface( | |
fn=classify_audio, | |
title=title, | |
description=description, | |
inputs=gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"), | |
theme="huggingface", | |
outputs=gr.outputs.Label(), | |
) | |
# iface.test_examples(example_samples) | |
with demo: | |
gr.TabbedInterface( | |
[mic_classify, file_classify], | |
["Classify Microphone", "Classify Audio File"], | |
) | |
demo.launch(debug=True, share=True) |