Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import tempfile | |
from functools import partial | |
import cv2 | |
import gradio as gr | |
import imageio | |
import numpy as np | |
import torch | |
import torchvision | |
from omegaconf import OmegaConf | |
from PIL import Image, ImageDraw | |
from pytorch_lightning import seed_everything | |
import sys | |
import copy | |
from utils.gradio_utils import load_preprocess_model, preprocess_image | |
from ldm.util import instantiate_from_config, img2tensor | |
from customnet.ddim import DDIMSampler | |
from einops import rearrange | |
import math | |
#### Description #### | |
title = r"""<h1 align="center">CustomNet: Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models</h1>""" | |
description = r""" | |
<b>Official Gradio demo</b> for <a href='https://github.com/TencentARC/CustomNet' target='_blank'><b>CustomNet: Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models</b></a>.<br> | |
π₯ CustomNet is novel unified customization method that can generate harmonious customized images without | |
test-time optimization. CustomNet supports explicit viewpoint, location, text controls while ensuring | |
object identity preservation.<br> | |
π€ Try to customize the object gneration yourself!<br> | |
""" | |
article = r""" | |
If CustomNet is helpful, please help to β the <a href='https://github.com/TencentARC/CustomNet' target='_blank'>Github Repo</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC%2FCustomNet)](https://github.com/TencentARC/CustomNet) | |
--- | |
π **Citation** | |
<br> | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@misc{yuan2023customnet, | |
title={CustomNet: Zero-shot Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models}, | |
author={Ziyang Yuan and Mingdeng Cao and Xintao Wang and Zhongang Qi and Chun Yuan and Ying Shan}, | |
year={2023}, | |
eprint={2310.19784}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV} | |
} | |
``` | |
π§ **Contact** | |
<br> | |
If you have any questions, please feel free to reach me out at <b>[email protected]</b>. | |
""" | |
# input_img = None | |
# concat_img = None | |
# T = None | |
# prompt = None | |
negtive_prompt = "" | |
# load model | |
device = torch.device("cuda") | |
preprocess_model = load_preprocess_model() | |
config = OmegaConf.load("configs/config_customnet.yaml") | |
model = instantiate_from_config(config.model) | |
model_path='./customnet_v1.pt?download=true' | |
if not os.path.exists(model_path): | |
os.system(f'wget https://huggingface.co/TencentARC/CustomNet/resolve/main/customnet_v1.pt?download=true -P .') | |
ckpt = torch.load(model_path, map_location="cpu") | |
model.load_state_dict(ckpt) | |
del ckpt | |
model = model.to(device) | |
sampler = None | |
def send_input_to_concat(input_image): | |
W, H = input_image.size | |
# image_array[:, 0, :] = image_array[:, 0, :] | |
draw = ImageDraw.Draw(input_image) | |
draw.rectangle([(0,0),(H-1, W-1)], outline="red", width=8) | |
return input_image | |
def preprocess_input(preprocess_model, input_image): | |
# global input_img | |
processed_image = preprocess_image(preprocess_model, input_image) | |
# input_img = (processed_image / 255.0).astype(np.float32) | |
return processed_image | |
# return processed_image, processed_image | |
def adjust_location(x0, y0, x1, y1, input_image): | |
x_0 = min(x0, x1) | |
x_1 = max(x0, x1) | |
y_0 = min(y0, y1) | |
y_1 = max(y0, y1) | |
print(x0, y0, x1, y1) | |
print(x_0, y_0, x_1, y_1) | |
new_size = (x_1-x_0, y_1-y_0) | |
input_image = input_image.resize(new_size) | |
img_array = np.array(input_image) | |
white_background = np.zeros((256, 256, 3)) | |
white_background[y0:y1, x0:x1, :] = img_array | |
img_array = white_background.astype(np.uint8) | |
concat_img = Image.fromarray(img_array) | |
draw = ImageDraw.Draw(concat_img) | |
draw.rectangle([(x0,y0),(x1,y1)], outline="red", width=5) | |
return x_0, y_0, x_1, y_1, concat_img | |
def prepare_data(device, input_image, x0, y0, x1, y1, polar, azimuth, text): | |
if input_image.size[0] != 256 or input_image.size[1] != 256: | |
input_image = input_image.resize((256, 256)) | |
input_image = np.array(input_image) | |
img_cond = img2tensor(input_image, bgr2rgb=False, float32=True).unsqueeze(0) / 255. | |
img_cond = img_cond*2-1 | |
img_location = copy.deepcopy(img_cond) | |
input_im_padding = torch.ones_like(img_location) | |
x_0 = min(x0, x1) | |
x_1 = max(x0, x1) | |
y_0 = min(y0, y1) | |
y_1 = max(y0, y1) | |
print(x0, y0, x1, y1) | |
print(x_0, y_0, x_1, y_1) | |
img_location = torch.nn.functional.interpolate(img_location, (y_1-y_0, x_1-x_0), mode="bilinear") | |
input_im_padding[:,:, y_0:y_1, x_0:x_1] = img_location | |
img_location = input_im_padding | |
T = torch.tensor([[math.radians(polar), math.sin(math.radians(azimuth)), math.cos(math.radians(azimuth)), 0.0]]).unsqueeze(1) | |
batch = { | |
"image_cond": img_cond.to(device), | |
"image_location": img_location.to(device), | |
'T': T.to(device), | |
'text': [text], | |
} | |
return batch | |
# def run_generation(sampler, model, device, input_image, x0, y0, x1, y1, polar, azimuth, text, seed): | |
def run_generation(sampler, input_image, x0, y0, x1, y1, polar, azimuth, text, seed): | |
seed_everything(seed) | |
batch = prepare_data(device, input_image, x0, y0, x1, y1, polar, azimuth, text) | |
# model = model.to(device) | |
sampler = DDIMSampler(model, device=device) | |
c = model.get_learned_conditioning(batch["image_cond"]) | |
c = torch.cat([c, batch["T"]], dim=-1) | |
c = model.cc_projection(c) | |
## condition | |
cond = {} | |
cond['c_concat'] = [model.encode_first_stage((batch["image_location"])).mode().detach()] | |
cond['c_crossattn'] = [c] | |
text_embedding = model.text_encoder(batch["text"]) | |
cond["c_crossattn"].append(text_embedding) | |
## null-condition | |
uc = {} | |
neg_prompt = "" | |
uc['c_concat'] = [torch.zeros(1, 4, 32, 32).to(c.device)] | |
uc['c_crossattn'] = [torch.zeros_like(c).to(c.device)] | |
uc_text_embedding = model.text_encoder([neg_prompt]) | |
uc['c_crossattn'].append(uc_text_embedding) | |
## sample | |
shape = [4, 32, 32] | |
samples_latents, _ = sampler.sample( | |
S=50, | |
batch_size=1, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=999, # useless | |
conditioning=cond, | |
unconditional_conditioning=uc, | |
cfg_type=0, | |
cfg_scale_dict={"img": 0., "text":0., "all": 3.0 } | |
) | |
x_samples = model.decode_first_stage(samples_latents) | |
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0).cpu().numpy() | |
x_samples = rearrange(255.0 *x_samples[0], 'c h w -> h w c').astype(np.uint8) | |
output_image = Image.fromarray(x_samples) | |
x0, y0, x1, y1, image_location = adjust_location(x0, y0, x1, y1, input_image) | |
return x0, y0, x1, y1, image_location, output_image | |
def load_example(input_image, x0, y0, x1, y1, polar, azimuth, prompt): | |
# print("AAAA") | |
# print(type(x0)) | |
# print(type(polar)) | |
return input_image, x0, y0, x1, y1, polar, azimuth, prompt | |
def main(args): | |
# load demo | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
## Left column | |
with gr.Column(): | |
## step 1. | |
gr.Markdown("## Step 1: Upload an object image and process", show_label=False) | |
# with gr.Row(equal_height=True): | |
input_image = gr.Image(type="pil", interactive=True, elem_id="input_image", elem_classes='image', visible=True) | |
preprocess_botton = gr.Button(value="Need preprocess", visible=True) | |
## step 2. | |
gr.Markdown("## Step 2: Set up different controls ", show_label=False, visible=True) | |
gr.Markdown("### 1: Object Location", show_label=False, visible=True) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
x0 = gr.Slider(minimum=0, maximum=256, step=1, label="X_0", value=0, interactive=True, visible=True) | |
y0 = gr.Slider(minimum=0, maximum=256, step=1, label="Y_0", value=0, interactive=True, visible=True) | |
with gr.Row(): | |
x1 = gr.Slider(minimum=0, maximum=256, step=1, label="X_1", value=256, interactive=True, visible=True) | |
y1 = gr.Slider(minimum=0, maximum=256, step=1, label="Y_1", value=256, interactive=True, visible=True) | |
location_botton = gr.Button(value="Update Location ", visible=True) | |
location_image = gr.Image(type="pil", interactive=True, elem_id="location", elem_classes='image', visible=True) | |
gr.Markdown("### 2: Object Viewpoint", show_label=False, visible=True) | |
with gr.Row(): | |
polar = gr.Slider(minimum=-30, maximum=30, step=-0.5, label="Polar Angle", value=0.0, visible=True) | |
azimuth = gr.Slider(minimum=-60, maximum=60, step=-0.5, label="Azimuth angle", value=0.0, visible=True) | |
gr.Markdown("### 3: Text", show_label=False, visible=True) | |
prompt = gr.Textbox(value="on the seaside", label="Prompt", interactive=True, visible=True) | |
## step 3. | |
gr.Markdown("## Step 3: Run Generation", show_label=False, visible=True) | |
seed = gr.Number(value=1234, precision=0, interactive=True, label="Seed", visible=True) | |
start = gr.Button(value="Run generation !", visible=True) | |
examples_full = [ | |
["examples/0.jpg", 50, 50, 256, 256, 0, -30, "a backpack in the office"], | |
["examples/1.jpg", 20, 20, 256, 256, -25, -35, "a pair of shoes on dirt road"], | |
["examples/2.jpg", 0, 0, 256, 256, -15, -20, "a car on the beach"], | |
["examples/3.jpg", 0, 0, 256, 256, 0, 30, "in the jungle"], | |
["examples/4.jpg", 0, 0, 256, 256, 0, -30, "in the snow"], | |
["examples/5.jpg", 20, 20, 240, 240, 10, 20, "with mountain behind"], | |
] | |
## Right column | |
with gr.Column(): | |
gr.Markdown("## Generation Results", show_label=False, visible=True) | |
output_image = gr.Image(type="pil", interactive=True, elem_id="output_image", elem_classes='image', visible=True) | |
gr.Examples( | |
examples=examples_full, # NOTE: elements must match inputs list! | |
fn=load_example, | |
inputs=[input_image, x0, y0, x1, y1, polar, azimuth, prompt], | |
outputs=[input_image, x0, y0, x1, y1, polar, azimuth, prompt], | |
cache_examples=False, | |
run_on_click=True, | |
) | |
gr.Markdown(article) | |
## function | |
input_image.change(send_input_to_concat, inputs=input_image, outputs=location_image) | |
preprocess_botton.click(partial(preprocess_input, preprocess_model), inputs=input_image, outputs=input_image) | |
location_botton.click(adjust_location, | |
inputs=[x0, y0, x1, y1, input_image], | |
outputs=[x0, y0, x1, y1, location_image]) | |
# start.click(partial(run_generation, sampler, model, device), | |
start.click(partial(run_generation, sampler), | |
inputs=[input_image, x0, y0, x1, y1, polar, azimuth, prompt, seed], | |
outputs=[x0, y0, x1, y1, location_image, output_image]) | |
# demo.launch(server_name='0.0.0.0', share=False, server_port=args.port) | |
# demo.queue(concurrency_count=1, max_size=10) | |
demo.queue().launch() | |
if __name__=="__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--port", type=int, default=12345) | |
args = parser.parse_args() | |
main(args) |