thuzhaowang commited on
Commit
ba640d5
Β·
1 Parent(s): d88d046

update arxiv link

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -137,7 +137,7 @@ _HEADER_ = '''
137
  This is official demo for our technical report <a href="">DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation </a>.
138
  **DI-PCG** is a diffusion model which directly generates a procedural generator's parameters from a single image, resulting in high-quality 3D meshes.
139
 
140
- Code: <a href='https://github.com/TencentARC/DI-PCG' target='_blank'>GitHub</a>. Techenical report: <a href='' target='_blank'>ArXiv</a>.
141
 
142
  ❗️❗️❗️**Important Notes:**
143
  - DI-PCG trains a diffusion model for each procedural generator. Current supported generators are: Chair, Table, Vase, Basket, Flower, Dandelion from <a href="https://github.com/princeton-vl/infinigen">Infinigen</a>.
@@ -151,7 +151,12 @@ If DI-PCG is helpful, please help to ⭐ the <a href='https://github.com/Tencent
151
 
152
  If you find our work useful for your research or applications, please cite using this bibtex:
153
  ```bibtex
154
-
 
 
 
 
 
155
  ```
156
 
157
  πŸ“‹ **License**
 
137
  This is official demo for our technical report <a href="">DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation </a>.
138
  **DI-PCG** is a diffusion model which directly generates a procedural generator's parameters from a single image, resulting in high-quality 3D meshes.
139
 
140
+ Code: <a href='https://github.com/TencentARC/DI-PCG' target='_blank'>GitHub</a>. Techenical report: <a href='http://arxiv.org/abs/2412.15200' target='_blank'>ArXiv</a>.
141
 
142
  ❗️❗️❗️**Important Notes:**
143
  - DI-PCG trains a diffusion model for each procedural generator. Current supported generators are: Chair, Table, Vase, Basket, Flower, Dandelion from <a href="https://github.com/princeton-vl/infinigen">Infinigen</a>.
 
151
 
152
  If you find our work useful for your research or applications, please cite using this bibtex:
153
  ```bibtex
154
+ @article{zhao2024dipcg,
155
+ title={DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation},
156
+ author={Zhao, Wang and Cao, Yanpei and Xu, Jiale and Dong, Yuejiang and Shan, Ying},
157
+ journal={arXiv preprint arXiv:2412.15200},
158
+ year={2024}
159
+ }
160
  ```
161
 
162
  πŸ“‹ **License**