Spaces:
Running
on
Zero
Running
on
Zero
bluestyle97
commited on
Delete freesplatter/utils/mesh_renderer.py
Browse files
freesplatter/utils/mesh_renderer.py
DELETED
@@ -1,608 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
import nvdiffrast.torch as dr
|
6 |
-
|
7 |
-
|
8 |
-
def get_ray_directions(h, w, intrinsics, norm=False, device=None):
|
9 |
-
"""
|
10 |
-
Args:
|
11 |
-
h (int)
|
12 |
-
w (int)
|
13 |
-
intrinsics: (*, 4), in [fx, fy, cx, cy]
|
14 |
-
|
15 |
-
Returns:
|
16 |
-
directions: (*, h, w, 3), the direction of the rays in camera coordinate
|
17 |
-
"""
|
18 |
-
batch_size = intrinsics.shape[:-1]
|
19 |
-
x = torch.linspace(0.5, w - 0.5, w, device=device)
|
20 |
-
y = torch.linspace(0.5, h - 0.5, h, device=device)
|
21 |
-
# (*, h, w, 2)
|
22 |
-
directions_xy = torch.stack(
|
23 |
-
[((x - intrinsics[..., 2:3]) / intrinsics[..., 0:1])[..., None, :].expand(*batch_size, h, w),
|
24 |
-
((y - intrinsics[..., 3:4]) / intrinsics[..., 1:2])[..., :, None].expand(*batch_size, h, w)], dim=-1)
|
25 |
-
# (*, h, w, 3)
|
26 |
-
directions = F.pad(directions_xy, [0, 1], mode='constant', value=1.0)
|
27 |
-
if norm:
|
28 |
-
directions = F.normalize(directions, dim=-1)
|
29 |
-
return directions
|
30 |
-
|
31 |
-
|
32 |
-
def edge_dilation(img, mask, radius=3, iter=7):
|
33 |
-
"""
|
34 |
-
Args:
|
35 |
-
img (torch.Tensor): (n, c, h, w)
|
36 |
-
mask (torch.Tensor): (n, 1, h, w)
|
37 |
-
radius (float): Radius of dilation.
|
38 |
-
|
39 |
-
Returns:
|
40 |
-
torch.Tensor: Dilated image.
|
41 |
-
"""
|
42 |
-
n, c, h, w = img.size()
|
43 |
-
int_radius = round(radius)
|
44 |
-
kernel_size = int(int_radius * 2 + 1)
|
45 |
-
distance1d_sq = torch.linspace(-int_radius, int_radius, kernel_size, dtype=img.dtype, device=img.device).square()
|
46 |
-
kernel_distance = (distance1d_sq.reshape(1, -1) + distance1d_sq.reshape(-1, 1)).sqrt()
|
47 |
-
kernel_neg_distance = kernel_distance.max() - kernel_distance + 1
|
48 |
-
|
49 |
-
for _ in range(iter):
|
50 |
-
|
51 |
-
mask_out = F.max_pool2d(mask, kernel_size, stride=1, padding=int_radius)
|
52 |
-
do_fill_mask = ((mask_out - mask) > 0.5).squeeze(1)
|
53 |
-
# (num_fill, 3) in [ind_n, ind_h, ind_w]
|
54 |
-
do_fill = do_fill_mask.nonzero()
|
55 |
-
|
56 |
-
# unfold the image and mask
|
57 |
-
mask_unfold = F.unfold(mask, kernel_size, padding=int_radius).reshape(
|
58 |
-
n, kernel_size * kernel_size, h, w).permute(0, 2, 3, 1)
|
59 |
-
|
60 |
-
fill_ind = (mask_unfold[do_fill_mask] * kernel_neg_distance.flatten()).argmax(dim=-1)
|
61 |
-
do_fill_h = do_fill[:, 1] + fill_ind // kernel_size - int_radius
|
62 |
-
do_fill_w = do_fill[:, 2] + fill_ind % kernel_size - int_radius
|
63 |
-
|
64 |
-
img_out = img.clone()
|
65 |
-
img_out[do_fill[:, 0], :, do_fill[:, 1], do_fill[:, 2]] = img[
|
66 |
-
do_fill[:, 0], :, do_fill_h, do_fill_w]
|
67 |
-
|
68 |
-
img = img_out
|
69 |
-
mask = mask_out
|
70 |
-
|
71 |
-
return img
|
72 |
-
|
73 |
-
|
74 |
-
def depth_to_normal(depth, directions, format='opengl'):
|
75 |
-
"""
|
76 |
-
Args:
|
77 |
-
depth: shape (*, h, w), inverse depth defined as 1 / z
|
78 |
-
directions: shape (*, h, w, 3), unnormalized ray directions, under OpenCV coordinate system
|
79 |
-
|
80 |
-
Returns:
|
81 |
-
out_normal: shape (*, h, w, 3), in range [0, 1]
|
82 |
-
"""
|
83 |
-
out_xyz = directions / depth.unsqueeze(-1).clamp(min=1e-6)
|
84 |
-
dx = out_xyz[..., :, 1:, :] - out_xyz[..., :, :-1, :]
|
85 |
-
dy = out_xyz[..., 1:, :, :] - out_xyz[..., :-1, :, :]
|
86 |
-
right = F.pad(dx, (0, 0, 0, 1, 0, 0), mode='replicate')
|
87 |
-
up = F.pad(-dy, (0, 0, 0, 0, 1, 0), mode='replicate')
|
88 |
-
left = F.pad(-dx, (0, 0, 1, 0, 0, 0), mode='replicate')
|
89 |
-
down = F.pad(dy, (0, 0, 0, 0, 0, 1), mode='replicate')
|
90 |
-
out_normal = F.normalize(
|
91 |
-
F.normalize(torch.cross(right, up, dim=-1), dim=-1)
|
92 |
-
+ F.normalize(torch.cross(up, left, dim=-1), dim=-1)
|
93 |
-
+ F.normalize(torch.cross(left, down, dim=-1), dim=-1)
|
94 |
-
+ F.normalize(torch.cross(down, right, dim=-1), dim=-1),
|
95 |
-
dim=-1)
|
96 |
-
if format == 'opengl':
|
97 |
-
out_normal[..., 1:3] = -out_normal[..., 1:3] # to opengl coord
|
98 |
-
elif format == 'opencv':
|
99 |
-
out_normal = out_normal
|
100 |
-
else:
|
101 |
-
raise ValueError('format should be opengl or opencv')
|
102 |
-
out_normal = out_normal / 2 + 0.5
|
103 |
-
return out_normal
|
104 |
-
|
105 |
-
|
106 |
-
def make_divisible(x, m=8):
|
107 |
-
return int(math.ceil(x / m) * m)
|
108 |
-
|
109 |
-
|
110 |
-
def interpolate_hwc(x, scale_factor, mode='area'):
|
111 |
-
batch_dim = x.shape[:-3]
|
112 |
-
y = x.reshape(batch_dim.numel(), *x.shape[-3:]).permute(0, 3, 1, 2)
|
113 |
-
y = F.interpolate(y, scale_factor=scale_factor, mode=mode).permute(0, 2, 3, 1)
|
114 |
-
return y.reshape(*batch_dim, *y.shape[1:])
|
115 |
-
|
116 |
-
|
117 |
-
def compute_edge_to_face_mapping(attr_idx):
|
118 |
-
with torch.no_grad():
|
119 |
-
# Get unique edges
|
120 |
-
# Create all edges, packed by triangle
|
121 |
-
all_edges = torch.cat((
|
122 |
-
torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1),
|
123 |
-
torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1),
|
124 |
-
torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1),
|
125 |
-
), dim=-1).view(-1, 2)
|
126 |
-
|
127 |
-
# Swap edge order so min index is always first
|
128 |
-
order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1)
|
129 |
-
sorted_edges = torch.cat((
|
130 |
-
torch.gather(all_edges, 1, order),
|
131 |
-
torch.gather(all_edges, 1, 1 - order)
|
132 |
-
), dim=-1)
|
133 |
-
|
134 |
-
# Elliminate duplicates and return inverse mapping
|
135 |
-
unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True)
|
136 |
-
|
137 |
-
tris = torch.arange(attr_idx.shape[0]).repeat_interleave(3).cuda()
|
138 |
-
|
139 |
-
tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda()
|
140 |
-
|
141 |
-
# Compute edge to face table
|
142 |
-
mask0 = order[:,0] == 0
|
143 |
-
mask1 = order[:,0] == 1
|
144 |
-
tris_per_edge[idx_map[mask0], 0] = tris[mask0]
|
145 |
-
tris_per_edge[idx_map[mask1], 1] = tris[mask1]
|
146 |
-
|
147 |
-
return tris_per_edge
|
148 |
-
|
149 |
-
|
150 |
-
@torch.cuda.amp.autocast(enabled=False)
|
151 |
-
def normal_consistency(face_normals, t_pos_idx):
|
152 |
-
|
153 |
-
tris_per_edge = compute_edge_to_face_mapping(t_pos_idx)
|
154 |
-
|
155 |
-
# Fetch normals for both faces sharind an edge
|
156 |
-
n0 = face_normals[tris_per_edge[:, 0], :]
|
157 |
-
n1 = face_normals[tris_per_edge[:, 1], :]
|
158 |
-
|
159 |
-
# Compute error metric based on normal difference
|
160 |
-
term = torch.clamp(torch.sum(n0 * n1, -1, keepdim=True), min=-1.0, max=1.0)
|
161 |
-
term = (1.0 - term)
|
162 |
-
|
163 |
-
return torch.mean(torch.abs(term))
|
164 |
-
|
165 |
-
|
166 |
-
def laplacian_uniform(verts, faces):
|
167 |
-
|
168 |
-
V = verts.shape[0]
|
169 |
-
F = faces.shape[0]
|
170 |
-
|
171 |
-
# Neighbor indices
|
172 |
-
ii = faces[:, [1, 2, 0]].flatten()
|
173 |
-
jj = faces[:, [2, 0, 1]].flatten()
|
174 |
-
adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique(dim=1)
|
175 |
-
adj_values = torch.ones(adj.shape[1], device=verts.device, dtype=torch.float)
|
176 |
-
|
177 |
-
# Diagonal indices
|
178 |
-
diag_idx = adj[0]
|
179 |
-
|
180 |
-
# Build the sparse matrix
|
181 |
-
idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1)
|
182 |
-
values = torch.cat((-adj_values, adj_values))
|
183 |
-
|
184 |
-
# The coalesce operation sums the duplicate indices, resulting in the
|
185 |
-
# correct diagonal
|
186 |
-
return torch.sparse_coo_tensor(idx, values, (V,V)).coalesce()
|
187 |
-
|
188 |
-
|
189 |
-
@torch.cuda.amp.autocast(enabled=False)
|
190 |
-
def laplacian_smooth_loss(verts, faces):
|
191 |
-
with torch.no_grad():
|
192 |
-
L = laplacian_uniform(verts, faces.long())
|
193 |
-
loss = L.mm(verts)
|
194 |
-
loss = loss.norm(dim=1)
|
195 |
-
loss = loss.mean()
|
196 |
-
return loss
|
197 |
-
|
198 |
-
|
199 |
-
class DMTet:
|
200 |
-
|
201 |
-
def __init__(self, device):
|
202 |
-
self.device = device
|
203 |
-
self.triangle_table = torch.tensor([
|
204 |
-
[-1, -1, -1, -1, -1, -1],
|
205 |
-
[1, 0, 2, -1, -1, -1],
|
206 |
-
[4, 0, 3, -1, -1, -1],
|
207 |
-
[1, 4, 2, 1, 3, 4],
|
208 |
-
[3, 1, 5, -1, -1, -1],
|
209 |
-
[2, 3, 0, 2, 5, 3],
|
210 |
-
[1, 4, 0, 1, 5, 4],
|
211 |
-
[4, 2, 5, -1, -1, -1],
|
212 |
-
[4, 5, 2, -1, -1, -1],
|
213 |
-
[4, 1, 0, 4, 5, 1],
|
214 |
-
[3, 2, 0, 3, 5, 2],
|
215 |
-
[1, 3, 5, -1, -1, -1],
|
216 |
-
[4, 1, 2, 4, 3, 1],
|
217 |
-
[3, 0, 4, -1, -1, -1],
|
218 |
-
[2, 0, 1, -1, -1, -1],
|
219 |
-
[-1, -1, -1, -1, -1, -1]
|
220 |
-
], dtype=torch.long, device=device)
|
221 |
-
self.num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long,
|
222 |
-
device=device)
|
223 |
-
self.base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device)
|
224 |
-
|
225 |
-
def sort_edges(self, edges_ex2):
|
226 |
-
with torch.no_grad():
|
227 |
-
order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long()
|
228 |
-
order = order.unsqueeze(dim=1)
|
229 |
-
|
230 |
-
a = torch.gather(input=edges_ex2, index=order, dim=1)
|
231 |
-
b = torch.gather(input=edges_ex2, index=1 - order, dim=1)
|
232 |
-
|
233 |
-
return torch.stack([a, b], -1)
|
234 |
-
|
235 |
-
def __call__(self, pos_nx3, sdf_n, tet_fx4):
|
236 |
-
# pos_nx3: [N, 3]
|
237 |
-
# sdf_n: [N]
|
238 |
-
# tet_fx4: [F, 4]
|
239 |
-
|
240 |
-
with torch.no_grad():
|
241 |
-
occ_n = sdf_n > 0
|
242 |
-
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
|
243 |
-
occ_sum = torch.sum(occ_fx4, -1) # [F,]
|
244 |
-
valid_tets = (occ_sum > 0) & (occ_sum < 4)
|
245 |
-
# occ_sum = occ_sum[valid_tets]
|
246 |
-
|
247 |
-
# find all vertices
|
248 |
-
all_edges = tet_fx4[valid_tets][:, self.base_tet_edges].reshape(-1, 2)
|
249 |
-
all_edges = self.sort_edges(all_edges)
|
250 |
-
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
|
251 |
-
|
252 |
-
unique_edges = unique_edges.long()
|
253 |
-
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
|
254 |
-
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1
|
255 |
-
mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=self.device)
|
256 |
-
idx_map = mapping[idx_map] # map edges to verts
|
257 |
-
|
258 |
-
interp_v = unique_edges[mask_edges]
|
259 |
-
|
260 |
-
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
|
261 |
-
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
|
262 |
-
edges_to_interp_sdf[:, -1] *= -1
|
263 |
-
|
264 |
-
denominator = edges_to_interp_sdf.sum(1, keepdim=True)
|
265 |
-
|
266 |
-
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
|
267 |
-
verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
|
268 |
-
|
269 |
-
idx_map = idx_map.reshape(-1, 6)
|
270 |
-
|
271 |
-
v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=self.device))
|
272 |
-
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
|
273 |
-
num_triangles = self.num_triangles_table[tetindex]
|
274 |
-
|
275 |
-
# Generate triangle indices
|
276 |
-
faces = torch.cat((
|
277 |
-
torch.gather(input=idx_map[num_triangles == 1], dim=1,
|
278 |
-
index=self.triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
|
279 |
-
torch.gather(input=idx_map[num_triangles == 2], dim=1,
|
280 |
-
index=self.triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
|
281 |
-
), dim=0)
|
282 |
-
|
283 |
-
return verts, faces
|
284 |
-
|
285 |
-
|
286 |
-
class MeshRenderer(nn.Module):
|
287 |
-
def __init__(self,
|
288 |
-
near=0.1,
|
289 |
-
far=10,
|
290 |
-
ssaa=1,
|
291 |
-
texture_filter='linear-mipmap-linear',
|
292 |
-
opengl=False,
|
293 |
-
device='cuda'):
|
294 |
-
super().__init__()
|
295 |
-
self.near = near
|
296 |
-
self.far = far
|
297 |
-
assert isinstance(ssaa, int) and ssaa >= 1
|
298 |
-
self.ssaa = ssaa
|
299 |
-
self.texture_filter = texture_filter
|
300 |
-
self.glctx = dr.RasterizeGLContext(output_db=False)
|
301 |
-
|
302 |
-
def forward(self, meshes, poses, intrinsics, h, w, shading_fun=None,
|
303 |
-
dilate_edges=0, normal_bg=[0.5, 0.5, 1.0], aa=True, render_vc=False):
|
304 |
-
"""
|
305 |
-
Args:
|
306 |
-
meshes (list[Mesh]): list of Mesh objects
|
307 |
-
poses: Shape (num_scenes, num_images, 3, 4)
|
308 |
-
intrinsics: Shape (num_scenes, num_images, 4) in [fx, fy, cx, cy]
|
309 |
-
"""
|
310 |
-
num_scenes, num_images, _, _ = poses.size()
|
311 |
-
|
312 |
-
if self.ssaa > 1:
|
313 |
-
h = h * self.ssaa
|
314 |
-
w = w * self.ssaa
|
315 |
-
intrinsics = intrinsics * self.ssaa
|
316 |
-
|
317 |
-
r_mat_c2w = torch.cat(
|
318 |
-
[poses[..., :3, :1], -poses[..., :3, 1:3]], dim=-1) # opencv to opengl conversion
|
319 |
-
|
320 |
-
proj = poses.new_zeros([num_scenes, num_images, 4, 4])
|
321 |
-
proj[..., 0, 0] = 2 * intrinsics[..., 0] / w
|
322 |
-
proj[..., 0, 2] = -2 * intrinsics[..., 2] / w + 1
|
323 |
-
proj[..., 1, 1] = -2 * intrinsics[..., 1] / h
|
324 |
-
proj[..., 1, 2] = -2 * intrinsics[..., 3] / h + 1
|
325 |
-
proj[..., 2, 2] = -(self.far + self.near) / (self.far - self.near)
|
326 |
-
proj[..., 2, 3] = -(2 * self.far * self.near) / (self.far - self.near)
|
327 |
-
proj[..., 3, 2] = -1
|
328 |
-
|
329 |
-
# (num_scenes, (num_images, num_vertices, 3))
|
330 |
-
v_cam = [(mesh.v - poses[i, :, :3, 3].unsqueeze(-2)) @ r_mat_c2w[i] for i, mesh in enumerate(meshes)]
|
331 |
-
# (num_scenes, (num_images, num_vertices, 4))
|
332 |
-
v_clip = [F.pad(v, pad=(0, 1), mode='constant', value=1.0) @ proj[i].transpose(-1, -2) for i, v in enumerate(v_cam)]
|
333 |
-
|
334 |
-
if num_scenes == 1:
|
335 |
-
# (num_images, h, w, 4) in [u, v, z/w, triangle_id] & (num_images, h, w, 4 or 0)
|
336 |
-
rast, rast_db = dr.rasterize(
|
337 |
-
self.glctx, v_clip[0], meshes[0].f, (h, w), grad_db=torch.is_grad_enabled())
|
338 |
-
|
339 |
-
fg = (rast[..., 3] > 0).unsqueeze(0) # (num_scenes, num_images, h, w)
|
340 |
-
alpha = fg.float().unsqueeze(-1)
|
341 |
-
|
342 |
-
depth = 1 / dr.interpolate(
|
343 |
-
-v_cam[0][..., 2:3].contiguous(), rast, meshes[0].f)[0].reshape(num_scenes, num_images, h, w)
|
344 |
-
depth.masked_fill_(~fg, 0)
|
345 |
-
|
346 |
-
normal = dr.interpolate(
|
347 |
-
meshes[0].vn.unsqueeze(0).contiguous(), rast, meshes[0].fn)[0].reshape(num_scenes, num_images, h, w, 3)
|
348 |
-
normal = F.normalize(normal, dim=-1)
|
349 |
-
# (num_scenes, num_images, h, w, 3) = (num_scenes, num_images, h, w, 3) @ (num_scenes, num_images, 1, 3, 3)
|
350 |
-
rot_normal = (normal @ r_mat_c2w.unsqueeze(2)) / 2 + 0.5
|
351 |
-
rot_normal[~fg] = rot_normal.new_tensor(normal_bg)
|
352 |
-
|
353 |
-
if meshes[0].vt is not None and meshes[0].albedo is not None:
|
354 |
-
# (num_images, h, w, 2) & (num_images, h, w, 4)
|
355 |
-
texc, texc_db = dr.interpolate(
|
356 |
-
meshes[0].vt.unsqueeze(0).contiguous(), rast, meshes[0].ft, rast_db=rast_db, diff_attrs='all')
|
357 |
-
# (num_scenes, num_images, h, w, 3)
|
358 |
-
albedo = dr.texture(
|
359 |
-
meshes[0].albedo.unsqueeze(0)[..., :3].contiguous(), texc, uv_da=texc_db, filter_mode=self.texture_filter).unsqueeze(0)
|
360 |
-
albedo[~fg] = 0
|
361 |
-
elif meshes[0].vc is not None:
|
362 |
-
rgba = dr.interpolate(
|
363 |
-
meshes[0].vc.contiguous(), rast, meshes[0].f)[0].reshape(num_scenes, num_images, h, w, 4)
|
364 |
-
alpha = alpha * rgba[..., 3:4]
|
365 |
-
albedo = rgba[..., :3] * alpha
|
366 |
-
else:
|
367 |
-
albedo = torch.zeros_like(rot_normal)
|
368 |
-
|
369 |
-
prev_grad_enabled = torch.is_grad_enabled()
|
370 |
-
torch.set_grad_enabled(True)
|
371 |
-
if shading_fun is not None:
|
372 |
-
xyz = dr.interpolate(
|
373 |
-
meshes[0].v.unsqueeze(0).contiguous(), rast, meshes[0].f)[0].reshape(num_scenes, num_images, h, w, 3)
|
374 |
-
rgb_reshade = shading_fun(
|
375 |
-
world_pos=xyz[fg],
|
376 |
-
albedo=albedo[fg],
|
377 |
-
world_normal=normal[fg],
|
378 |
-
fg_mask=fg)
|
379 |
-
albedo = torch.zeros_like(albedo)
|
380 |
-
albedo[fg] = rgb_reshade
|
381 |
-
|
382 |
-
# (num_scenes, num_images, h, w, 4)
|
383 |
-
rgba = torch.cat([albedo, alpha], dim=-1)
|
384 |
-
|
385 |
-
if dilate_edges > 0:
|
386 |
-
rgba = rgba.reshape(num_scenes * num_images, h, w, 4).permute(0, 3, 1, 2)
|
387 |
-
rgba = edge_dilation(rgba, rgba[:, 3:], dilate_edges)
|
388 |
-
rgba = rgba.permute(0, 2, 3, 1).reshape(num_scenes, num_images, h, w, 4)
|
389 |
-
|
390 |
-
if aa:
|
391 |
-
rgba, depth, rot_normal = dr.antialias(
|
392 |
-
torch.cat([rgba, depth.unsqueeze(-1), rot_normal], dim=-1).squeeze(0),
|
393 |
-
rast, v_clip[0], meshes[0].f).unsqueeze(0).split([4, 1, 3], dim=-1)
|
394 |
-
depth = depth.squeeze(-1)
|
395 |
-
|
396 |
-
else: # concat and range mode
|
397 |
-
# v_cat = []
|
398 |
-
v_clip_cat = []
|
399 |
-
v_cam_cat = []
|
400 |
-
vn_cat = []
|
401 |
-
vt_cat = []
|
402 |
-
f_cat = []
|
403 |
-
fn_cat = []
|
404 |
-
ft_cat = []
|
405 |
-
v_count = 0
|
406 |
-
vn_count = 0
|
407 |
-
vt_count = 0
|
408 |
-
f_count = 0
|
409 |
-
f_ranges = []
|
410 |
-
for i, mesh in enumerate(meshes):
|
411 |
-
num_v = v_clip[i].size(1)
|
412 |
-
num_vn = mesh.vn.size(0)
|
413 |
-
num_vt = mesh.vt.size(0)
|
414 |
-
# v_cat.append(mesh.v.unsqueeze(0).expand(num_images, -1, -1).reshape(num_images * num_v, 3))
|
415 |
-
v_clip_cat.append(v_clip[i].reshape(num_images * num_v, 4))
|
416 |
-
v_cam_cat.append(v_cam[i].reshape(num_images * num_v, 3))
|
417 |
-
vn_cat.append(mesh.vn.unsqueeze(0).expand(num_images, -1, -1).reshape(num_images * num_vn, 3))
|
418 |
-
vt_cat.append(mesh.vt.unsqueeze(0).expand(num_images, -1, -1).reshape(num_images * num_vt, 2))
|
419 |
-
for _ in range(num_images):
|
420 |
-
f_cat.append(mesh.f + v_count)
|
421 |
-
fn_cat.append(mesh.fn + vn_count)
|
422 |
-
ft_cat.append(mesh.ft + vt_count)
|
423 |
-
v_count += num_v
|
424 |
-
vn_count += num_vn
|
425 |
-
vt_count += num_vt
|
426 |
-
f_ranges.append([f_count, mesh.f.size(0)])
|
427 |
-
f_count += mesh.f.size(0)
|
428 |
-
# v_cat = torch.cat(v_cat, dim=0)
|
429 |
-
v_clip_cat = torch.cat(v_clip_cat, dim=0)
|
430 |
-
v_cam_cat = torch.cat(v_cam_cat, dim=0)
|
431 |
-
vn_cat = torch.cat(vn_cat, dim=0)
|
432 |
-
f_cat = torch.cat(f_cat, dim=0)
|
433 |
-
f_ranges = torch.tensor(f_ranges, device=poses.device, dtype=torch.int32)
|
434 |
-
# (num_scenes * num_images, h, w, 4) in [u, v, z/w, triangle_id] & (num_scenes * num_images, h, w, 4 or 0)
|
435 |
-
rast, rast_db = dr.rasterize(
|
436 |
-
self.glctx, v_clip_cat, f_cat, (h, w), ranges=f_ranges, grad_db=torch.is_grad_enabled())
|
437 |
-
|
438 |
-
fg = (rast[..., 3] > 0).reshape(num_scenes, num_images, h, w)
|
439 |
-
|
440 |
-
depth = 1 / dr.interpolate(
|
441 |
-
-v_cam_cat[..., 2:3].contiguous(), rast, f_cat)[0].reshape(num_scenes, num_images, h, w)
|
442 |
-
depth.masked_fill_(~fg, 0)
|
443 |
-
|
444 |
-
normal = dr.interpolate(
|
445 |
-
vn_cat, rast, fn_cat)[0].reshape(num_scenes, num_images, h, w, 3)
|
446 |
-
normal = F.normalize(normal, dim=-1)
|
447 |
-
# (num_scenes, num_images, h, w, 3) = (num_scenes, num_images, h, w, 3) @ (num_scenes, num_images, 1, 3, 3)
|
448 |
-
rot_normal = (normal @ r_mat_c2w.unsqueeze(2)) / 2 + 0.5
|
449 |
-
rot_normal[~fg] = rot_normal.new_tensor(normal_bg)
|
450 |
-
|
451 |
-
# (num_scenes * num_images, h, w, 2) & (num_scenes * num_images, h, w, 4)
|
452 |
-
texc, texc_db = dr.interpolate(
|
453 |
-
vt_cat, rast, ft_cat, rast_db=rast_db, diff_attrs='all')
|
454 |
-
albedo = dr.texture(
|
455 |
-
torch.cat([mesh.albedo.unsqueeze(0)[..., :3].expand(num_images, -1, -1, -1) for mesh in meshes], dim=0),
|
456 |
-
texc, uv_da=texc_db, filter_mode=self.texture_filter
|
457 |
-
).reshape(num_scenes, num_images, h, w, 3)
|
458 |
-
|
459 |
-
prev_grad_enabled = torch.is_grad_enabled()
|
460 |
-
torch.set_grad_enabled(True)
|
461 |
-
if shading_fun is not None:
|
462 |
-
raise NotImplementedError
|
463 |
-
|
464 |
-
# (num_scenes, num_images, h, w, 4)
|
465 |
-
rgba = torch.cat([albedo, fg.float().unsqueeze(-1)], dim=-1)
|
466 |
-
|
467 |
-
if dilate_edges > 0:
|
468 |
-
rgba = rgba.reshape(num_scenes * num_images, h, w, 4).permute(0, 3, 1, 2)
|
469 |
-
rgba = edge_dilation(rgba, rgba[:, 3:], dilate_edges)
|
470 |
-
rgba = rgba.permute(0, 2, 3, 1).reshape(num_scenes, num_images, h, w, 4)
|
471 |
-
|
472 |
-
if aa:
|
473 |
-
# Todo: depth/normal antialiasing
|
474 |
-
rgba = dr.antialias(
|
475 |
-
rgba.reshape(num_scenes * num_images, h, w, 4), rast, v_clip_cat, f_cat
|
476 |
-
).reshape(num_scenes, num_images, h, w, 4)
|
477 |
-
|
478 |
-
if self.ssaa > 1:
|
479 |
-
rgba = interpolate_hwc(rgba, 1 / self.ssaa)
|
480 |
-
depth = interpolate_hwc(depth.unsqueeze(-1), 1 / self.ssaa).squeeze(-1)
|
481 |
-
rot_normal = interpolate_hwc(rot_normal, 1 / self.ssaa)
|
482 |
-
|
483 |
-
results = dict(
|
484 |
-
rgba=rgba,
|
485 |
-
depth=depth,
|
486 |
-
normal=rot_normal)
|
487 |
-
|
488 |
-
torch.set_grad_enabled(prev_grad_enabled)
|
489 |
-
|
490 |
-
return results
|
491 |
-
|
492 |
-
def bake_xyz_shading_fun(self, meshes, shading_fun, map_size=1024, force_auto_uv=False):
|
493 |
-
assert len(meshes) == 1, 'only support one mesh'
|
494 |
-
mesh = meshes[0]
|
495 |
-
|
496 |
-
if mesh.vt is None or force_auto_uv:
|
497 |
-
mesh.auto_uv()
|
498 |
-
assert len(mesh.ft) == len(mesh.f)
|
499 |
-
|
500 |
-
vt_clip = torch.cat([mesh.vt * 2 - 1, mesh.vt.new_tensor([[0., 1.]]).expand(mesh.vt.size(0), -1)], dim=-1)
|
501 |
-
|
502 |
-
rast = dr.rasterize(self.glctx, vt_clip[None], mesh.ft, (map_size, map_size), grad_db=False)[0]
|
503 |
-
valid = (rast[..., 3] > 0).reshape(map_size, map_size)
|
504 |
-
|
505 |
-
xyz = dr.interpolate(mesh.v[None], rast, mesh.f)[0].reshape(map_size, map_size, 3)
|
506 |
-
rgb_reshade = shading_fun(world_pos=xyz[valid])
|
507 |
-
new_albedo_map = xyz.new_zeros((map_size, map_size, 3))
|
508 |
-
new_albedo_map[valid] = rgb_reshade
|
509 |
-
torch.cuda.empty_cache()
|
510 |
-
new_albedo_map = edge_dilation(
|
511 |
-
new_albedo_map.permute(2, 0, 1)[None], valid[None, None].float(),
|
512 |
-
).squeeze(0).permute(1, 2, 0)
|
513 |
-
mesh.albedo = torch.cat(
|
514 |
-
[new_albedo_map.clamp(min=0, max=1),
|
515 |
-
torch.ones_like(new_albedo_map[..., :1])], dim=-1)
|
516 |
-
|
517 |
-
mesh.textureless = False
|
518 |
-
return [mesh]
|
519 |
-
|
520 |
-
def bake_multiview(self, meshes, images, alphas, poses, intrinsics, map_size=1024, cos_weight_pow=4.0):
|
521 |
-
assert len(meshes) == 1, 'only support one mesh'
|
522 |
-
mesh = meshes[0]
|
523 |
-
images = images[0] # (n, h, w, 3)
|
524 |
-
alphas = alphas[0] # (n, h, w, 1)
|
525 |
-
n, h, w, _ = images.size()
|
526 |
-
|
527 |
-
r_mat_c2w = torch.cat(
|
528 |
-
[poses[..., :3, :1], -poses[..., :3, 1:3]], dim=-1)[0] # opencv to opengl conversion
|
529 |
-
|
530 |
-
proj = poses.new_zeros([n, 4, 4])
|
531 |
-
proj[..., 0, 0] = 2 * intrinsics[..., 0] / w
|
532 |
-
proj[..., 0, 2] = -2 * intrinsics[..., 2] / w + 1
|
533 |
-
proj[..., 1, 1] = -2 * intrinsics[..., 1] / h
|
534 |
-
proj[..., 1, 2] = -2 * intrinsics[..., 3] / h + 1
|
535 |
-
proj[..., 2, 2] = -(self.far + self.near) / (self.far - self.near)
|
536 |
-
proj[..., 2, 3] = -(2 * self.far * self.near) / (self.far - self.near)
|
537 |
-
proj[..., 3, 2] = -1
|
538 |
-
|
539 |
-
# (num_images, num_vertices, 3)
|
540 |
-
v_cam = (mesh.v.detach() - poses[0, :, :3, 3].unsqueeze(-2)) @ r_mat_c2w
|
541 |
-
# (num_images, num_vertices, 4)
|
542 |
-
v_clip = F.pad(v_cam, pad=(0, 1), mode='constant', value=1.0) @ proj.transpose(-1, -2)
|
543 |
-
|
544 |
-
rast, rast_db = dr.rasterize(self.glctx, v_clip, mesh.f, (h, w), grad_db=False)
|
545 |
-
texc, texc_db = dr.interpolate(
|
546 |
-
mesh.vt.unsqueeze(0).contiguous(), rast, mesh.ft, rast_db=rast_db, diff_attrs='all')
|
547 |
-
|
548 |
-
with torch.enable_grad():
|
549 |
-
dummy_maps = torch.ones((n, map_size, map_size, 1), device=images.device, dtype=images.dtype).requires_grad_(True)
|
550 |
-
# (num_images, h, w, 1)
|
551 |
-
albedo = dr.texture(
|
552 |
-
dummy_maps, texc, uv_da=texc_db, filter_mode=self.texture_filter)
|
553 |
-
visibility_grad = torch.autograd.grad(albedo.sum(), dummy_maps, create_graph=False)[0]
|
554 |
-
|
555 |
-
fg = rast[..., 3] > 0 # (num_images, h, w)
|
556 |
-
depth = 1 / dr.interpolate(
|
557 |
-
-v_cam[..., 2:3].contiguous(), rast, mesh.f)[0].reshape(n, h, w)
|
558 |
-
depth.masked_fill_(~fg, 0)
|
559 |
-
|
560 |
-
# # save all the depth maps for visualization debug
|
561 |
-
# import matplotlib.pyplot as plt
|
562 |
-
# for i in range(n):
|
563 |
-
# plt.imshow(depth[i].cpu().numpy())
|
564 |
-
# plt.savefig(f'depth_{i}.png')
|
565 |
-
# # also save the alphas
|
566 |
-
# for i in range(n):
|
567 |
-
# plt.imshow(alphas[i].cpu().numpy())
|
568 |
-
# plt.savefig(f'alpha_{i}.png')
|
569 |
-
|
570 |
-
directions = get_ray_directions(
|
571 |
-
h, w, intrinsics.squeeze(0), norm=True, device=intrinsics.device)
|
572 |
-
|
573 |
-
normals_opencv = depth_to_normal(
|
574 |
-
depth, directions, format='opencv') * 2 - 1
|
575 |
-
normals_cos_weight = (normals_opencv[..., None, :] @ directions[..., :, None]).squeeze(-1).neg().clamp(min=0)
|
576 |
-
|
577 |
-
img_space_weight = (normals_cos_weight ** cos_weight_pow) * alphas
|
578 |
-
img_space_weight = -F.max_pool2d( # alleviate edge effect
|
579 |
-
-img_space_weight.permute(0, 3, 1, 2), 5, stride=1, padding=2).permute(0, 2, 3, 1)
|
580 |
-
|
581 |
-
# bake texture
|
582 |
-
vt_clip = torch.cat([mesh.vt * 2 - 1, mesh.vt.new_tensor([[0., 1.]]).expand(mesh.vt.size(0), -1)], dim=-1)
|
583 |
-
|
584 |
-
rast, rast_db = dr.rasterize(self.glctx, vt_clip[None], mesh.ft, (map_size, map_size), grad_db=False)
|
585 |
-
valid = (rast[..., 3] > 0).reshape(map_size, map_size)
|
586 |
-
rast = rast.expand(n, -1, -1, -1)
|
587 |
-
rast_db = rast_db.expand(n, -1, -1, -1)
|
588 |
-
v_img = v_clip[..., :2] / v_clip[..., 3:] * 0.5 + 0.5
|
589 |
-
# print(v_img.min(), v_img.max())
|
590 |
-
texc, texc_db = dr.interpolate(
|
591 |
-
v_img.contiguous(), rast.contiguous(), mesh.f, rast_db=rast_db.contiguous(), diff_attrs='all')
|
592 |
-
# (n, map_size, map_size, 4)
|
593 |
-
tex = dr.texture(
|
594 |
-
torch.cat([images, img_space_weight], dim=-1), texc, uv_da=texc_db, filter_mode=self.texture_filter)
|
595 |
-
|
596 |
-
weight = tex[..., 3:4] * visibility_grad
|
597 |
-
|
598 |
-
new_albedo_map = (tex[..., :3] * weight).sum(dim=0) / weight.sum(dim=0).clamp(min=1e-6)
|
599 |
-
|
600 |
-
new_albedo_map = edge_dilation(
|
601 |
-
new_albedo_map.permute(2, 0, 1)[None], valid[None, None].float(),
|
602 |
-
).squeeze(0).permute(1, 2, 0)
|
603 |
-
mesh.albedo = torch.cat(
|
604 |
-
[new_albedo_map.clamp(min=0, max=1),
|
605 |
-
torch.ones_like(new_albedo_map[..., :1])], dim=-1)
|
606 |
-
|
607 |
-
mesh.textureless = False
|
608 |
-
return [mesh]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|