import numpy as np import plotly.express as px import plotly.graph_objects as go def vis_camera(RT_list, rescale_T=1): fig = go.Figure() showticklabels = True visible = True scene_bounds = 2 base_radius = 2.5 zoom_scale = 1.5 fov_deg = 50.0 edges = [(0, 1), (0, 2), (0, 3), (1, 2), (2, 3), (3, 1), (3, 4)] colors = px.colors.qualitative.Plotly cone_list = [] n = len(RT_list) for i, RT in enumerate(RT_list): R = RT[:,:3] T = RT[:,-1]/rescale_T cone = calc_cam_cone_pts_3d(R, T, fov_deg) cone_list.append((cone, (i*1/n, "green"), f"view_{i}")) for (cone, clr, legend) in cone_list: for (i, edge) in enumerate(edges): (x1, x2) = (cone[edge[0], 0], cone[edge[1], 0]) (y1, y2) = (cone[edge[0], 1], cone[edge[1], 1]) (z1, z2) = (cone[edge[0], 2], cone[edge[1], 2]) fig.add_trace(go.Scatter3d( x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines', line=dict(color=clr, width=3), name=legend, showlegend=(i == 0))) fig.update_layout( height=500, autosize=True, # hovermode=False, margin=go.layout.Margin(l=0, r=0, b=0, t=0), showlegend=True, legend=dict( yanchor='bottom', y=0.01, xanchor='right', x=0.99, ), scene=dict( aspectmode='manual', aspectratio=dict(x=1, y=1, z=1.0), camera=dict( center=dict(x=0.0, y=0.0, z=0.0), up=dict(x=0.0, y=-1.0, z=0.0), eye=dict(x=scene_bounds/2, y=-scene_bounds/2, z=-scene_bounds/2), ), xaxis=dict( range=[-scene_bounds, scene_bounds], showticklabels=showticklabels, visible=visible, ), yaxis=dict( range=[-scene_bounds, scene_bounds], showticklabels=showticklabels, visible=visible, ), zaxis=dict( range=[-scene_bounds, scene_bounds], showticklabels=showticklabels, visible=visible, ) )) return fig def calc_cam_cone_pts_3d(R_W2C, T_W2C, fov_deg, scale=0.1, set_canonical=False, first_frame_RT=None): fov_rad = np.deg2rad(fov_deg) R_W2C_inv = np.linalg.inv(R_W2C) # Camera pose center: T = np.zeros_like(T_W2C) - T_W2C T = np.dot(R_W2C_inv, T) cam_x = T[0] cam_y = T[1] cam_z = T[2] if set_canonical: T = np.zeros_like(T_W2C) T = np.dot(first_frame_RT[:,:3], T) + first_frame_RT[:,-1] T = T - T_W2C T = np.dot(R_W2C_inv, T) cam_x = T[0] cam_y = T[1] cam_z = T[2] # vertex corn1 = np.array([np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale corn2 = np.array([-np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale corn3 = np.array([0, -0.25*np.tan(fov_rad / 2.0), 1.0]) *scale corn4 = np.array([0, -0.5*np.tan(fov_rad / 2.0), 1.0]) *scale corn1 = corn1 - T_W2C corn2 = corn2 - T_W2C corn3 = corn3 - T_W2C corn4 = corn4 - T_W2C corn1 = np.dot(R_W2C_inv, corn1) corn2 = np.dot(R_W2C_inv, corn2) corn3 = np.dot(R_W2C_inv, corn3) corn4 = np.dot(R_W2C_inv, corn4) # Now attach as offset to actual 3D camera position: corn_x1 = corn1[0] corn_y1 = corn1[1] corn_z1 = corn1[2] corn_x2 = corn2[0] corn_y2 = corn2[1] corn_z2 = corn2[2] corn_x3 = corn3[0] corn_y3 = corn3[1] corn_z3 = corn3[2] corn_x4 = corn4[0] corn_y4 = corn4[1] corn_z4 = corn4[2] xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4, ] ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4, ] zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4, ] return np.array([xs, ys, zs]).T # T_base = [ # [1.,0.,0.], ## W2C x 的正方向: 相机朝左 left # [-1.,0.,0.], ## W2C x 的负方向: 相机朝右 right # [0., 1., 0.], ## W2C y 的正方向: 相机朝上 up # [0.,-1.,0.], ## W2C y 的负方向: 相机朝下 down # [0.,0.,1.], ## W2C z 的正方向: 相机往前 zoom out # [0.,0.,-1.], ## W2C z 的负方向: 相机往前 zoom in # ] # radius = 1 # n = 16 # # step = # look_at = np.array([0, 0, 0.8]).reshape(3,1) # # look_at = np.array([0, 0, 0.2]).reshape(3,1) # T_list = [] # base_R = np.array([[1., 0., 0.], # [0., 1., 0.], # [0., 0., 1.]]) # res = [] # res_forsave = [] # T_range = 1.8 # for i in range(0, 16): # # theta = (1)*np.pi*i/n # R = base_R[:,:3] # T = np.array([0.,0.,1.]).reshape(3,1) * (i/n)*2 # RT = np.concatenate([R,T], axis=1) # res.append(RT) # fig = vis_camera(res)