|
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
|
|
model_id = 'digiplay/RunDiffusionFXPhotorealistic_v1' |
|
prefix = 'RAW photo,' |
|
|
|
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
scheduler=scheduler) |
|
|
|
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
scheduler=scheduler) |
|
|
|
if torch.cuda.is_available(): |
|
pipe = pipe.to("cuda") |
|
pipe_i2i = pipe_i2i.to("cuda") |
|
|
|
def error_str(error, title="Error"): |
|
return f"""#### {title} |
|
{error}""" if error else "" |
|
|
|
|
|
def _parse_args(prompt, generator): |
|
parser = argparse.ArgumentParser( |
|
description="making it work." |
|
) |
|
parser.add_argument( |
|
"--no-half-vae", help="no half vae" |
|
) |
|
|
|
cmdline_args = parser.parse_args() |
|
command = cmdline_args.command |
|
conf_file = cmdline_args.conf_file |
|
conf_args = Arguments(conf_file) |
|
opt = conf_args.readArguments() |
|
|
|
if cmdline_args.config_overrides: |
|
for config_override in cmdline_args.config_overrides.split(";"): |
|
config_override = config_override.strip() |
|
if config_override: |
|
var_val = config_override.split("=") |
|
assert ( |
|
len(var_val) == 2 |
|
), f"Config override '{var_val}' does not have the form 'VAR=val'" |
|
conf_args.add_opt(opt, var_val[0], var_val[1], force_override=True) |
|
|
|
def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=False): |
|
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None |
|
prompt = f"{prefix} {prompt}" if auto_prefix else prompt |
|
|
|
try: |
|
if img is not None: |
|
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None |
|
else: |
|
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None |
|
except Exception as e: |
|
return None, error_str(e) |
|
|
|
|
|
|
|
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator): |
|
|
|
result = pipe( |
|
prompt, |
|
negative_prompt = neg_prompt, |
|
num_inference_steps = int(steps), |
|
guidance_scale = guidance, |
|
width = width, |
|
height = height, |
|
generator = generator) |
|
|
|
return result.images[0] |
|
|
|
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator): |
|
|
|
ratio = min(height / img.height, width / img.width) |
|
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) |
|
result = pipe_i2i( |
|
prompt, |
|
negative_prompt = neg_prompt, |
|
init_image = img, |
|
num_inference_steps = int(steps), |
|
strength = strength, |
|
guidance_scale = guidance, |
|
width = width, |
|
height = height, |
|
generator = generator) |
|
|
|
return result.images[0] |
|
|
|
def fake_safety_checker(images, **kwargs): |
|
return result.images[0], [False] * len(images) |
|
|
|
pipe.safety_checker = fake_safety_checker |
|
|
|
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
gr.HTML( |
|
f""" |
|
<div class="main-div"> |
|
<div> |
|
<h1 style="color:orange;">📷 RunDiffusionFXPhotorealistic V1.0 📸</h1> |
|
</div> |
|
<p> |
|
Demo for <a href="https://huggingface.co/digiplay/RunDiffusionFXPhotorealistic_v1">RunDiffusionFXPhotorealistic V1.0</a> |
|
Stable Diffusion model by <a href="https://huggingface.co/digiplay/"><abbr title="digiplay">digiplay</abbr></a>. {"" if prefix else ""} |
|
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU ⚡</b>"}. |
|
</p> |
|
<p>Please use the prompt template below to get an example of the desired generation results: |
|
</p> |
|
|
|
<b>Prompt</b>: |
|
<details><code> |
|
RAW photo, * subject *, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3 |
|
<br> |
|
<br> |
|
<q><i> |
|
Example: (hyperrealism:1.2), BREAK fish swimming under the water BREAK (8K UHD:1.2), (photorealistic:1.2) |
|
</i></q> |
|
</code></details> |
|
|
|
<br> |
|
<b>Negative Prompt</b>: |
|
<details><code> |
|
e.g. : plain background, boring, plain, standard, homogenous, uncreative, unattractive, opaque, grayscale, monochrome, distorted details, low details, grains, |
|
grainy, foggy, dark, blurry, portrait, oversaturated, low contrast, underexposed, overexposed, low-res, low quality, close-up, macro, surreal, multiple views, |
|
multiple angles |
|
</code></details> |
|
<br> |
|
Wide/Tall aspect ratios like '480x832'/'832x480' work great then you can upscale. |
|
|
|
You can use a CFG scale of 3.5 to 5 to get some softer photorealistic images. |
|
<br> |
|
Have Fun & Enjoy ⚡ <a href="https://www.thafx.com"><abbr title="Website">//THAFX</abbr></a> |
|
<br> |
|
|
|
</div> |
|
""" |
|
) |
|
with gr.Row(): |
|
|
|
with gr.Column(scale=55): |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", show_label=False,max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False) |
|
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) |
|
|
|
image_out = gr.Image(height=512) |
|
error_output = gr.Markdown() |
|
|
|
with gr.Column(scale=45): |
|
with gr.Tab("Options"): |
|
with gr.Group(): |
|
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") |
|
auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically (RAW photo,)", value=prefix, visible=prefix) |
|
|
|
with gr.Row(): |
|
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) |
|
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) |
|
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) |
|
|
|
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) |
|
|
|
with gr.Tab("Image to image"): |
|
with gr.Group(): |
|
image = gr.Image(label="Image", height=256, tool="editor", type="pil") |
|
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) |
|
|
|
auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False) |
|
|
|
inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix] |
|
outputs = [image_out, error_output] |
|
prompt.submit(inference, inputs=inputs, outputs=outputs) |
|
generate.click(inference, inputs=inputs, outputs=outputs) |
|
|
|
|
|
|
|
demo.queue(concurrency_count=1) |
|
demo.launch() |
|
|