Spaces:
Sleeping
Sleeping
File size: 13,560 Bytes
6550da2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# processor.py
import cv2
import numpy as np
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders
import os
from ultralytics import YOLO
from transformers import AutoModel, AutoProcessor
from PIL import Image, ImageDraw, ImageFont
import re
import torch
# Email credentials (replace with your App-Specific Password)
FROM_EMAIL = "[email protected]"
EMAIL_PASSWORD = "cawxqifzqiwjufde" # Use App-Specific Password here
TO_EMAIL = "[email protected]"
SMTP_SERVER = 'smtp.gmail.com'
SMTP_PORT = 465
# Arabic dictionary for converting license plate text
arabic_dict = {
"0": "٠", "1": "١", "2": "٢", "3": "٣", "4": "٤", "5": "٥",
"6": "٦", "7": "٧", "8": "٨", "9": "٩", "A": "ا", "B": "ب",
"J": "ح", "D": "د", "R": "ر", "S": "س", "X": "ص", "T": "ط",
"E": "ع", "G": "ق", "K": "ك", "L": "ل", "Z": "م", "N": "ن",
"H": "ه", "U": "و", "V": "ي", " ": " "
}
class_colors = {
0: (0, 255, 0), # Green (Helmet)
1: (255, 0, 0), # Blue (License Plate)
2: (0, 0, 255), # Red (MotorbikeDelivery)
3: (255, 255, 0), # Cyan (MotorbikeSport)
4: (255, 0, 255), # Magenta (No Helmet)
5: (0, 255, 255), # Yellow (Person)
}
# Load the OCR model
processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
model_ocr = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True).to('cuda')
# Load YOLO model
model = YOLO('yolov8_Medium.pt') # Update the path as needed
# Define lane area coordinates (example coordinates)
red_lane = np.array([[2,1583],[1,1131],[1828,1141],[1912,1580]], np.int32)
# Dictionary to track violations per license plate
violations_dict = {}
def filter_license_plate_text(license_plate_text):
license_plate_text = re.sub(r'[^A-Z0-9]+', "", license_plate_text)
match = re.search(r'(\d{4})\s*([A-Z]{2})', license_plate_text)
return f"{match.group(1)} {match.group(2)}" if match else None
def convert_to_arabic(license_plate_text):
return "".join(arabic_dict.get(char, char) for char in license_plate_text)
def send_email(license_text, violation_image_path, violation_type):
# Define the subject and body based on violation type
if violation_type == 'No Helmet, In Red Lane':
subject = 'تنبيه مخالفة: عدم ارتداء خوذة ودخول المسار الأيسر'
body = f"لعدم ارتداء الخوذة ولدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة"
elif violation_type == 'In Red Lane':
subject = 'تنبيه مخالفة: دخول المسار الأيسر'
body = f"لدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة"
else:
violation_type == 'No Helmet'
subject = 'تنبيه مخالفة: عدم ارتداء خوذة'
body = f"لعدم ارتداء الخوذة ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة"
# Create the email message
msg = MIMEMultipart()
msg['From'] = FROM_EMAIL
msg['To'] = TO_EMAIL
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
# Attach the violation image
if os.path.exists(violation_image_path):
with open(violation_image_path, 'rb') as attachment_file:
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment_file.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(violation_image_path)}')
msg.attach(part)
# Send the email using SMTP
try:
with smtplib.SMTP_SSL(SMTP_SERVER, SMTP_PORT) as server:
server.login(FROM_EMAIL, EMAIL_PASSWORD)
server.sendmail(FROM_EMAIL, TO_EMAIL, msg.as_string())
print("Email with attachment sent successfully!")
except Exception as e:
print(f"Failed to send email: {e}")
def draw_text_pil(img, text, position, font_path, font_size, color):
img_pil = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img_pil)
try:
font = ImageFont.truetype(font_path, size=font_size)
except IOError:
print(f"Font file not found at {font_path}. Using default font.")
font = ImageFont.load_default()
draw.text(position, text, font=font, fill=color)
img_np = cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR)
return img_np
def process_video(video_path, font_path, violation_image_path='violation.jpg'):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error opening video file")
return None
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video_path = 'output_violation.mp4'
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
margin_y = 50
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.polylines(frame, [red_lane], isClosed=True, color=(0, 0, 255), thickness=3)
results = model.track(frame)
for box in results[0].boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
label = model.names[int(box.cls)]
color = class_colors.get(int(box.cls), (255, 255, 255))
confidence = box.conf[0].item()
helmet_violation = False
lane_violation = False
violation_type = []
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3)
cv2.putText(frame, f'{label}: {confidence:.2f}', (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
if label == 'MotorbikeDelivery' and confidence >= 0.4:
motorbike_crop = frame[max(0, y1 - margin_y):y2, x1:x2]
delivery_center = ((x1 + x2) // 2, y2)
in_red_lane = cv2.pointPolygonTest(red_lane, delivery_center, False)
if in_red_lane >= 0:
lane_violation = True
violation_type.append("In Red Lane")
sub_results = model(motorbike_crop)
for result in sub_results[0].boxes:
sub_x1, sub_y1, sub_x2, sub_y2 = map(int, result.xyxy[0].cpu().numpy())
sub_label = model.names[int(result.cls)]
sub_color = (255, 0, 0)
cv2.rectangle(motorbike_crop, (sub_x1, sub_y1), (sub_x2, sub_y2), sub_color, 2)
cv2.putText(motorbike_crop, sub_label, (sub_x1, sub_y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, sub_color, 2)
if sub_label == 'No_Helmet':
helmet_violation = True
violation_type.append("No Helmet")
continue
if sub_label == 'License_plate':
license_crop = motorbike_crop[sub_y1:sub_y2, sub_x1:sub_x2]
if helmet_violation or lane_violation:
cv2.imwrite(violation_image_path, frame)
license_plate_pil = Image.fromarray(cv2.cvtColor(license_crop, cv2.COLOR_BGR2RGB))
temp_image_path = 'license_plate.png'
license_plate_pil.save(temp_image_path)
# Placeholder for OCR
# license_plate_text = model_ocr.chat(processor, temp_image_path, ocr_type='ocr')
# For demonstration, we'll mock the OCR result
license_plate_text = "1234AB"
filtered_text = filter_license_plate_text(license_plate_text)
if filtered_text:
if filtered_text not in violations_dict:
violations_dict[filtered_text] = violation_type
send_email(filtered_text, violation_image_path, ', '.join(violation_type))
else:
current_violations = set(violations_dict[filtered_text])
new_violations = set(violation_type)
updated_violations = list(current_violations | new_violations)
if updated_violations != violations_dict[filtered_text]:
violations_dict[filtered_text] = updated_violations
send_email(filtered_text, violation_image_path, ', '.join(updated_violations))
arabic_text = convert_to_arabic(filtered_text)
frame = draw_text_pil(frame, filtered_text, (x1, y2 + 30), font_path, font_size=30, color=(255, 255, 255))
frame = draw_text_pil(frame, arabic_text, (x1, y2 + 60), font_path, font_size=30, color=(0, 255, 0))
out.write(frame)
cap.release()
out.release()
return output_video_path
def process_image(image_path, font_path, violation_image_path='violation.jpg'):
frame = cv2.imread(image_path)
if frame is None:
print("Error loading image")
return None
cv2.polylines(frame, [red_lane], isClosed=True, color=(0, 0, 255), thickness=3)
results = model.track(frame)
for box in results[0].boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
label = model.names[int(box.cls)]
color = class_colors.get(int(box.cls), (255, 255, 255))
confidence = box.conf[0].item()
helmet_violation = False
lane_violation = False
violation_type = []
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3)
cv2.putText(frame, f'{label}: {confidence:.2f}', (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
if label == 'MotorbikeDelivery' and confidence >= 0.4:
motorbike_crop = frame[max(0, y1 - 50):y2, x1:x2]
delivery_center = ((x1 + x2) // 2, y2)
in_red_lane = cv2.pointPolygonTest(red_lane, delivery_center, False)
if in_red_lane >= 0:
lane_violation = True
violation_type.append("In Red Lane")
sub_results = model(motorbike_crop)
for result in sub_results[0].boxes:
sub_x1, sub_y1, sub_x2, sub_y2 = map(int, result.xyxy[0].cpu().numpy())
sub_label = model.names[int(result.cls)]
sub_color = (255, 0, 0)
cv2.rectangle(motorbike_crop, (sub_x1, sub_y1), (sub_x2, sub_y2), sub_color, 2)
cv2.putText(motorbike_crop, sub_label, (sub_x1, sub_y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, sub_color, 2)
if sub_label == 'No_Helmet':
helmet_violation = True
violation_type.append("No Helmet")
continue
if sub_label == 'License_plate':
license_crop = motorbike_crop[sub_y1:sub_y2, sub_x1:sub_x2]
if helmet_violation or lane_violation:
cv2.imwrite(violation_image_path, frame)
license_plate_pil = Image.fromarray(cv2.cvtColor(license_crop, cv2.COLOR_BGR2RGB))
temp_image_path = 'license_plate.png'
license_plate_pil.save(temp_image_path)
# Placeholder for OCR
# license_plate_text = model_ocr.chat(processor, temp_image_path, ocr_type='ocr')
# For demonstration, we'll mock the OCR result
license_plate_text = "1234AB"
filtered_text = filter_license_plate_text(license_plate_text)
if filtered_text:
if filtered_text not in violations_dict:
violations_dict[filtered_text] = violation_type
send_email(filtered_text, violation_image_path, ', '.join(violation_type))
else:
current_violations = set(violations_dict[filtered_text])
new_violations = set(violation_type)
updated_violations = list(current_violations | new_violations)
if updated_violations != violations_dict[filtered_text]:
violations_dict[filtered_text] = updated_violations
send_email(filtered_text, violation_image_path, ', '.join(updated_violations))
arabic_text = convert_to_arabic(filtered_text)
frame = draw_text_pil(frame, filtered_text, (x1, y2 + 30), font_path, font_size=30, color=(255, 255, 255))
frame = draw_text_pil(frame, arabic_text, (x1, y2 + 60), font_path, font_size=30, color=(0, 255, 0))
return frame |